RT-DETR改进策略【注意力机制篇】| WACV-2024 D-LKA 可变形的大核注意 针对大尺度、不规则的目标图像
一、本文介绍
本文记录的是
利用
D-LKA
模块优化
RT-DETR
的目标检测网络模型
。
D-LKA
结合了
大卷积核的广阔感受野
和
可变形卷积的灵活性
,有效地处理复杂的图像信息。本文将其应用到
RT-DETR
中,并进行
二次创新
,使网络能够综合多种维度信息,更好地突出重要特征,从而提升
对不同尺度目标和不规则形状目标的特征提取能力。
二、D-LKA介绍
2.1 设计出发点
-
解决传统卷积和注意力机制的局限性
- 传统卷积神经网络(CNN)在处理图像分割时,对于不同尺度的物体检测存在问题。如果物体超出对应网络层的感受野,会导致分割不足;而过大的感受野相比物体实际大小,背景信息可能会对预测产生不当影响。
-
Vision Transformer(ViT)虽然能通过注意力机制聚合 全局信息 ,但在有效建模 局部信息方面存在局限 ,难以检测局部纹理。
-
充分利用体积上下文并提高计算效率
- 大多数当前方法处理三维体积图像数据时采用逐片处理的方式(伪3D),丢失了关键的片间信息,降低了模型的整体性能。
- 需要一种 既能充分理解体积上下文,又能避免计算开销过大的方法 ,同时还要考虑医学领域中病变形状经常变形的特点。
2.2 原理
2.2.1 Large Kernel Attention(LKA)原理
-
相似感受野的构建
:大卷积核可以通过
深度可分离卷积(depth-wise convolution)、深度可分离空洞卷积(depthwise dilated convolution)和1×1卷积来构建,其能提供与自注意力机制相似的感受野,但 参数和计算量更少。 -
参数和计算量计算
-
对于二维输入(维度为
H
×
W
H×W
H
×
W
,通道为
c
c
c
),
深度可分离卷积核大小 D W = ( 2 d − 1 ) × ( 2 d − 1 ) DW=(2d - 1)×(2d - 1) D W = ( 2 d − 1 ) × ( 2 d − 1 ) ,深度可分离空洞卷积核大小 D W − D = ⌈ K d ⌉ × ⌈ K d ⌉ DW - D=\left\lceil\frac{K}{d}\right\rceil×\left\lceil\frac{K}{d}\right\rceil D W − D = ⌈ d K ⌉ × ⌈ d K ⌉ ( K K K 为目标卷积核大小, d d d 为空洞率)。参数量: P ( K , d ) = C ( ⌈ K d ⌉ 2 + ( 2 d − 1 ) 2 + 3 + C ) P(K, d)=C(\left\lceil\frac{K}{d}\right\rceil^{2}+(2d - 1)^{2}+3 + C) P ( K , d ) = C ( ⌈ d K ⌉ 2 + ( 2 d − 1 ) 2 + 3 + C ) ,浮点运算次数(FLOPs): F ( K , d ) = P ( K , d ) × H × W F(K, d)=P(K, d)×H×W F ( K , d ) = P ( K , d ) × H × W 。 - 对于三维输入(维度为 H × W × D H×W×D H × W × D ,通道为 c c c ),参数量: P 3 d ( K , d ) = C ( ⌈ K d ⌉ 3 + ( 2 d − 1 ) 3 + 3 + C ) P_{3d}(K, d)=C(\left\lceil\frac{K}{d}\right\rceil^{3}+(2d - 1)^{3}+3 + C) P 3 d ( K , d ) = C ( ⌈ d K ⌉ 3 + ( 2 d − 1 ) 3 + 3 + C ) ,FLOPs: F 3 d ( K , d ) = P 3 d ( K , d ) × H × W × D F_{3d}(K, d)=P_{3d}(K, d)×H×W×D F 3 d ( K , d ) = P 3 d ( K , d ) × H × W × D 。
-
对于二维输入(维度为
H
×
W
H×W
H
×
W
,通道为
c
c
c
),
2.2.2 Deformable Large Kernel Attention(D - LKA)原理
-
引入可变形卷积
:在LKA的基础上引入
可变形卷积(Deformable Convolutions),可变形卷积能够通过 整数偏移量调整采样网格 ,实现 自由变形。 - 自适应卷积核的形成 :一个额外的卷积层从特征图中学习变形,创建一个偏移场,基于特征本身学习变形会产生一个自适应卷积核,这种灵活的核形状可以改善对变形物体的表示,从而 增强对物体边界的定义。
2.3 结构
2.3.1 2D D - LKA模块结构
-
整体结构
:包含
LayerNorm、deformable LKA和Multi - Layer Perceptron(MLP),并集成了 残差连接 ,以确保有效的特征传播。 -
计算公式
- x 1 = D − L K A − A t t n ( L N ( x i n ) ) + x i n x_{1}=D - LKA - Attn\left(LN\left(x_{in}\right)\right)+x_{in} x 1 = D − L K A − A tt n ( L N ( x in ) ) + x in
- x o u t = M L P ( L N ( x 1 ) ) + x 1 x_{out}=MLP\left(LN\left(x_{1}\right)\right)+x_{1} x o u t = M L P ( L N ( x 1 ) ) + x 1
- M L P = C o n v 1 ( G e L U ( C o n v d ( C o n v 1 ( x ) ) ) ) MLP=Conv_{1}\left(GeLU\left(Conv_{d}\left(Conv_{1}(x)\right)\right)\right) M L P = C o n v 1 ( G e LU ( C o n v d ( C o n v 1 ( x ) ) ) ) (其中 x i n x_{in} x in 为输入特征, L N LN L N 为层归一化, D − L K A − A t t n D - LKA - Attn D − L K A − A tt n 为可变形大核注意力, C o n v d Convd C o n v d 为深度卷积, C o n v 1 Conv1 C o n v 1 为线性层, G e L U GeLU G e LU 为激活函数)
2.3.2 3D D - LKA模块结构
-
整体结构
:包括
层归一化和D - LKA Attention,后面跟着应用了 残差连接 的3×3×3卷积层和1×1×1卷积层。 -
计算公式
- x 1 = D A t t n ( L N ( x i n ) ) + x i n x_{1}=D Attn\left(LN\left(x_{in}\right)\right)+x_{in} x 1 = D A tt n ( L N ( x in ) ) + x in
-
x
o
u
t
=
C
o
n
v
1
(
C
o
n
v
3
(
x
1
)
)
+
x
1
x_{out}=Conv_{1}\left(Conv_{3}\left(x_{1}\right)\right)+x_{1}
x
o
u
t
=
C
o
n
v
1
(
C
o
n
v
3
(
x
1
)
)
+
x
1
(其中
x
i
n
x_{in}
x
in
为输入特征,
L
N
LN
L
N
为
层归一化, D A t t n D Attn D A tt n 为可变形大核注意力, C o n v 1 Conv_{1} C o n v 1 为线性层, C o n v 3 Conv_{3} C o n v 3 为包含两个卷积层和激活函数的前馈网络, x o u t x_{out} x o u t 为输出特征)
2.3.3 基于D - LKA模块的网络结构
-
2D D - LKA Net
-
编码器
:使用
MaxViT作为编码器组件进行高效特征提取,首先通过卷积干将输入图像维度降低到 H 4 × W 4 × C \frac{H}{4}×\frac{W}{4}×C 4 H × 4 W × C ,然后通过四个阶段的MaxViT块进行特征提取,每个阶段后跟着下采样层。 -
解码器
:包含四个阶段的
D - LKA层,每个阶段有两个D - LKA块,接着是 patch - expanding层 用于分辨率上采样和通道维度降低,最后通过线性层生成最终输出。
-
编码器
:使用
-
3D D - LKA Net
-
编码器 - 解码器设计
:使用
patch embedding层
将输入图像维度从
(
H
×
W
×
D
)
(H×W×D)
(
H
×
W
×
D
)
降低到
(
H
4
×
W
4
×
D
2
)
(\frac{H}{4}×\frac{W}{4}×\frac{D}{2})
(
4
H
×
4
W
×
2
D
)
,编码器内有三个
D-LKA阶段,每个阶段包含三个D-LKA块,每个阶段后进行下采样,中央瓶颈包含两组D-LKA块。 -
解码器结构与编码器对称,使用转置卷积来双倍特征分辨率并降低通道计数,每个解码器阶段使用三个
D-LKA块促进长程特征依赖,最终通过3×3×3和1×1×1卷积层生成分割输出,并通过卷积形成 跳连接 。
-
编码器 - 解码器设计
:使用
patch embedding层
将输入图像维度从
(
H
×
W
×
D
)
(H×W×D)
(
H
×
W
×
D
)
降低到
(
H
4
×
W
4
×
D
2
)
(\frac{H}{4}×\frac{W}{4}×\frac{D}{2})
(
4
H
×
4
W
×
2
D
)
,编码器内有三个
2.4 优势
-
有效处理上下文信息和局部描述符
:
D-LKA模块在架构中平衡了上下文信息处理和局部描述符保留,能够实现精确的语义分割。 - 动态适应感受野 :基于数据动态调整感受野,克服了传统卷积操作中固定滤波器掩码的固有局限性。
-
适用于2D和3D数据
:开发了2D和3D版本的
D-LKA Net架构,3D模型的D-LKA机制适合3D上下文,能够在不同体积之间无缝交换信息。 -
计算效率高
:仅依靠
D-LKA概念实现了计算效率,在各种分割基准测试中取得了优异性能,确立了该方法作为一种新的SOTA方法。同时,可变形LKA虽然增加了模型的参数和FLOPs,但在批量处理时,由于其高效的实现方式,甚至可以观察到推理时间的减少。
论文: https://arxiv.org/pdf/2309.00121.pdf
源码: https://github.com/mindflow-institue/deformableLKA
三、D-LKA的实现代码
D-LKA
及其改进的实现代码如下:
import torch
import torch.nn as nn
import torchvision
from ultralytics.nn.modules.conv import LightConv
import torch.nn.functional as F
class DeformConv(nn.Module):
def __init__(self, in_channels, groups, kernel_size=(3, 3), padding=1, stride=1, dilation=1, bias=True):
super(DeformConv, self).__init__()
self.offset_net = nn.Conv2d(in_channels=in_channels,
out_channels=2 * kernel_size[0] * kernel_size[1],
kernel_size=kernel_size,
padding=padding,
stride=stride,
dilation=dilation,
bias=True)
self.deform_conv = torchvision.ops.DeformConv2d(in_channels=in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
padding=padding,
groups=groups,
stride=stride,
dilation=dilation,
bias=False)
def forward(self, x):
offsets = self.offset_net(x)
out = self.deform_conv(x, offsets)
return out
class deformable_LKA(nn.Module):
def __init__(self, dim):
super().__init__()
self.conv0 = DeformConv(dim, kernel_size=(5,5), padding=2, groups=dim)
self.conv_spatial = DeformConv(dim, kernel_size=(7,7), stride=1, padding=9, groups=dim, dilation=3)
self.conv1 = nn.Conv2d(dim, dim, 1)
def forward(self, x):
u = x.clone()
attn = self.conv0(x)
attn = self.conv_spatial(attn)
attn = self.conv1(attn)
return u * attn
class deformable_LKA_Attention(nn.Module):
def __init__(self, d_model):
super().__init__()
self.proj_1 = nn.Conv2d(d_model, d_model, 1)
self.activation = nn.GELU()
self.spatial_gating_unit = deformable_LKA(d_model)
self.proj_2 = nn.Conv2d(d_model, d_model, 1)
def forward(self, x):
shorcut = x.clone()
x = self.proj_1(x)
x = self.activation(x)
x = self.spatial_gating_unit(x)
x = self.proj_2(x)
x = x + shorcut
return x
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class HGBlock_DLKA(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = deformable_LKA_Attention(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
class ResNetBlock(nn.Module):
"""ResNet block with standard convolution layers."""
def __init__(self, c1, c2, s=1, e=4):
"""Initialize convolution with given parameters."""
super().__init__()
c3 = e * c2
self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
self.cv3 = Conv(c2, c3, k=1, act=False)
self.cv4 = deformable_LKA_Attention(c2)
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
def forward(self, x):
"""Forward pass through the ResNet block."""
return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))
class ResNetLayer_DLKA(nn.Module):
"""ResNet layer with multiple ResNet blocks."""
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
"""Initializes the ResNetLayer given arguments."""
super().__init__()
self.is_first = is_first
if self.is_first:
self.layer = nn.Sequential(
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
else:
blocks = [ResNetBlock(c1, c2, s, e=e)]
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
self.layer = nn.Sequential(*blocks)
def forward(self, x):
"""Forward pass through the ResNet layer."""
return self.layer(x)
四、创新模块
4.1 改进点1⭐
模块改进方法
:基于
DLKA模块
的
HGBlock
(
第五节讲解添加步骤
)。
第一种改进方法是对
RT-DETR
中的
HGBlock模块
进行改进,并将
DLKA
在加入到
HGBlock
模块中。
改进代码如下:
对
HGBlock
模块进行改进,加入
DLKA模块
,并重命名为
HGBlock_DLKA
class HGBlock_DLKA(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = deformable_LKA_Attention(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
4.2 改进点2⭐
模块改进方法
:基于
DLKA模块
的
ResNetLayer
(
第五节讲解添加步骤
)。
第二种改进方法是对
RT-DETR
中的
ResNetLayer模块
进行改进,并将
DLKA
在加入到
ResNetLayer
模块中。
改进代码如下:
对
ResNetLayer_DLKA
模块进行改进,加入
DLKA模块
class ResNetBlock(nn.Module):
"""ResNet block with standard convolution layers."""
def __init__(self, c1, c2, s=1, e=4):
"""Initialize convolution with given parameters."""
super().__init__()
c3 = e * c2
self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
self.cv3 = Conv(c2, c3, k=1, act=False)
self.cv4 = deformable_LKA_Attention(c2)
self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()
def forward(self, x):
"""Forward pass through the ResNet block."""
return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))
class ResNetLayer_DLKA(nn.Module):
"""ResNet layer with multiple ResNet blocks."""
def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
"""Initializes the ResNetLayer given arguments."""
super().__init__()
self.is_first = is_first
if self.is_first:
self.layer = nn.Sequential(
Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
)
else:
blocks = [ResNetBlock(c1, c2, s, e=e)]
blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
self.layer = nn.Sequential(*blocks)
def forward(self, x):
"""Forward pass through the ResNet layer."""
return self.layer(x)
注意❗:在
第五小节
中需要声明的模块名称为:
HGBlock_DLKA
和
ResNetLayer_DLKA
。
五、添加步骤
5.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
DLKA.py
,将
第三节
中的代码粘贴到此处
5.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .DLKA import *
5.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
HGBlock_DLKA
和
ResNetLayer_DLKA
模块
六、yaml模型文件
6.1 模型改进版本1
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-HGBlock_DLKA.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-HGBlock_DLKA.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
中的
HGBlock
替换成
HGBlock_DLKA
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock_DLKA, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock_DLKA, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock_DLKA, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
6.2 模型改进版本2⭐
此处以
ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-ResNetLayer_DLKA.yaml
。
将
rtdetr-resnet50.yaml
中的内容复制到
rtdetr-ResNetLayer_DLKA.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
中的
ResNetLayer模块
替换成
ResNetLayer_DLKA模块
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, ResNetLayer_DLKA, [3, 64, 1, True, 1]] # 0
- [-1, 1, ResNetLayer_DLKA, [64, 64, 1, False, 3]] # 1
- [-1, 1, ResNetLayer_DLKA, [256, 128, 2, False, 4]] # 2
- [-1, 1, ResNetLayer_DLKA, [512, 256, 2, False, 6]] # 3
- [-1, 1, ResNetLayer_DLKA, [1024, 512, 2, False, 3]] # 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 7
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 11
- [-1, 1, Conv, [256, 1, 1]] # 12
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
七、成功运行结果
打印网络模型可以看到
HGBlock_DLKA
和
ResNetLayer_DLKA
已经加入到模型中,并可以进行训练了。
rtdetr-l-HGBlock_DLKA :
rtdetr-l-HGBlock_DLKA summary: 718 layers, 61,074,047 parameters, 61,074,047 gradients, 197.7 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 11117332 ultralytics.nn.AddModules.DLKA.HGBlock_DLKA [512, 192, 1024, 5, 6, True, False]
6 -1 6 11477780 ultralytics.nn.AddModules.DLKA.HGBlock_DLKA [1024, 192, 1024, 5, 6, True, True]
7 -1 6 11477780 ultralytics.nn.AddModules.DLKA.HGBlock_DLKA [1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
10 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
11 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
22 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
23 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
25 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
26 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
28 [21, 24, 27] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-HGBlock_DLKA summary: 718 layers, 61,074,047 parameters, 61,074,047 gradients, 197.7 GFLOPs
rtdetr-ResNetLayer_DLKA :
rtdetr-ResNetLayer_DLKA summary: 785 layers, 69,680,675 parameters, 69,680,675 gradients, 276.9 GFLOPs
from n params module arguments
0 -1 1 9536 ultralytics.nn.AddModules.DLKA.ResNetLayer_DLKA[3, 64, 1, True, 1]
1 -1 1 1429884 ultralytics.nn.AddModules.DLKA.ResNetLayer_DLKA[64, 64, 1, False, 3]
2 -1 1 4554832 ultralytics.nn.AddModules.DLKA.ResNetLayer_DLKA[256, 128, 2, False, 4]
3 -1 1 17693048 ultralytics.nn.AddModules.DLKA.ResNetLayer_DLKA[512, 256, 2, False, 6]
4 -1 1 26738620 ultralytics.nn.AddModules.DLKA.ResNetLayer_DLKA[1024, 512, 2, False, 3]
5 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
6 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
7 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
8 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
9 3 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
10 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
11 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 2 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
18 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
19 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
20 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
21 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
23 [16, 19, 22] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-ResNetLayer_DLKA summary: 785 layers, 69,680,675 parameters, 69,680,675 gradients, 276.9 GFLOPs