学习资源站

RT-DETR改进策略【Conv和Transformer】TPAMI-2024Conv2Former利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能-

RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能

一、本文介绍

本文记录的是 利用 Conv2Former 优化 RT-DETR 的目标检测网络模型 Transformer 通过自注意力机制能够获取全局信息,但资源占用较大。卷积操作资源占用较少,但只能根据卷积核的大小获取局部信息。 Conv2Former 通过卷积调制操作简化了自注意力机制,更有效地利用了大核卷积,在视觉识别任务中表现出较好的性能。



二、Conv2Former介绍

Conv2Former: A Simple Transformer-Style ConvNet for Visual Recognition

Conv2Former 是一种用于视觉识别的新型卷积网络架构,其设计的原理和优势如下:

2.1 原理

2.1.1 整体架构

Conv2Former 采用金字塔结构,与 ConvNeXt Swin Transformer 网络类似,共四个阶段,每阶段特征图分辨率不同,连续阶段间使用 patch embedding 块(通常为步长2的2×2卷积)降低分辨率,不同阶段有不同数量的卷积块,构建了 Conv2Former-N Conv2Former-T Conv2Former-S Conv2Forme -B Conv2Former-L 五种变体。

2.1.1 卷积调制块

  • Self-Attention :对于输入令牌序列X, Self-Attention 首先通过线性层生成键K、查询Q和值V,输出为值的加权平均,基于相似性得分矩阵A,A通过Softmax(QK⊤)计算,矩阵A的形状为R ^ {N×N},使得自注意力的计算复杂度随序列长度N的增加而呈二次方增长。
  • 卷积调制 :输入令牌X ∈ R ^ {H×W×C},使用核大小为k×k的简单深度卷积和哈达玛积计算输出z,具体为Z = A ⊙ V,A = DConv_(k×k)(W1X),V = W2X,其中⊙是哈达玛积,w1和w2是两个线性层的权重矩阵,DConv_(k×k)表示核大小为k×k的深度卷积。这样使得每个空间位置(h, w)与以(h, w)为中心的k×k方形区域内的所有像素相关联,通过线性层实现通道间的信息交互,每个空间位置的输出是该方形区域内所有像素的加权和。

在这里插入图片描述

2.2 优势

  • 与Self - attention对比 :利用卷积建立关系,在处理高分辨率图像时比Self-Attention更节省内存。
  • 与经典残差块对比 :由于调制操作,能够适应输入内容。
  • 对大核卷积的利用 :ConvNeXt受益于将卷积核大小从3增大到7,但进一步增加核大小几乎没有性能增益且带来计算负担,而Conv2Former随着核大小从5×5增加到21×21,性能有持续提升,且默认将核大小设置为11×11以考虑模型效率。
  • 加权策略 :将深度卷积的输出作为权重来调制线性投影后的特征,且在哈达玛积之前不使用激活或归一化层(如Sigmoid或Lp归一化),这是获得良好性能的关键因素,例如添加Sigmoid函数会使性能下降超过0.5%。
  • 实验结果 :在ImageNet分类、COCO对象检测和ADE20k语义分割等任务中,Conv2Former的性能优于之前流行的ConvNets和大多数基于Transformer的模型。

论文: https://arxiv.org/pdf/2211.11943
源码: https://github.com/HVision-NKU/Conv2Former

三、Conv2Former的实现代码

Conv2Former模块 的实现代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial

from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import math

from ultralytics.nn.modules.conv import LightConv
from ultralytics.utils.torch_utils import fuse_conv_and_bn

def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups mg
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))

class MLP(nn.Module):
    def __init__(self, dim, mlp_ratio=4):
        super().__init__()
        self.norm = LayerNorm(dim, eps=1e-6, data_format="channels_first")#mg
        self.fc1 = nn.Conv2d(dim, dim * mlp_ratio, 1)
        self.pos = nn.Conv2d(dim * mlp_ratio, dim * mlp_ratio, 3, padding=1, groups=dim * mlp_ratio)
        self.fc2 = nn.Conv2d(dim * mlp_ratio, dim, 1)
        self.act = nn.GELU()

    def forward(self, x):
        B, C, H, W = x.shape
        x = self.norm(x)
        x = self.fc1(x)
        x = self.act(x)
        x = x + self.act(self.pos(x))
        x = self.fc2(x)

        return x

class Conv2FormerBlock(nn.Module):
    def __init__(self, dim, mlp_ratio=4, drop_path=0.):
        super().__init__()
        self.attn = ConvMod(dim)
        self.mlp = MLP(dim, mlp_ratio)#mg
        layer_scale_init_value = 1e-6           
        self.layer_scale_1 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
        self.layer_scale_2 = nn.Parameter(
            layer_scale_init_value * torch.ones((dim)), requires_grad=True)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        x = x + self.drop_path(self.layer_scale_1.unsqueeze(-1).unsqueeze(-1) * self.attn(x))
        x = x + self.drop_path(self.layer_scale_2.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        return x
      
class LayerNorm(nn.Module):
    r""" From ConvNeXt (https://arxiv.org/pdf/2201.03545.pdf)
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format#mg
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x

class ConvMod(nn.Module):
    def __init__(self, dim):
        super().__init__()

        self.norm = LayerNorm(dim, eps=1e-6, data_format="channels_first")
        self.a = nn.Sequential(
                nn.Conv2d(dim, dim, 1),
                nn.GELU(),
                nn.Conv2d(dim, dim, 11, padding=5, groups=dim)
        )
        self.v = nn.Conv2d(dim, dim, 1)
        self.proj = nn.Conv2d(dim, dim, 1)

    def forward(self, x):
        B, C, H, W = x.shape
        x = self.norm(x)   
        a = self.a(x)
        x = a * self.v(x)
        x = self.proj(x)
        return x

class Conv2Formers(nn.Module):
    def __init__(self, c1, c2, n=1, shortcut=False, e=0.5):  
        super().__init__()
        self.c = int(c2 * e)  
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)#mg
        self.cb = nn.ModuleList(Conv2FormerBlock(self.c) for _ in range(n))

    def forward(self, x):
        y = list(self.cv1(x).split((self.c, self.c), 1))
        y.extend(cb(y[-1]) for cb in self.cb)
        return self.cv2(torch.cat(y, 1))

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class HGBlock_Conv2Formers(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = Conv2Formers(c1, c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y


四、创新模块

4.1 改进点⭐

模块改进方法 :直接加入 Conv2Former 第五节讲解添加步骤 )。

Conv2Former 模块加入如下:

在这里插入图片描述

4.2 改进点⭐

模块改进方法 :基于 Conv2Former模块 HGBlock 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 HGBlock模块 进行改进,并将 Conv2Former 在加入到 HGBlock 模块中。 Conv2Formers 利用卷积建立关系,在处理高分辨率图像时比 Self-Attention 更节省内存,且能够获取全局信息,大核卷积弥补了常规卷积的不足,提高了网络性能,为RT-DETR提供更丰富的特征表示

改进代码如下:

首先对 HGBlock 模块进行改进,加入 Conv2Former模块 ,并重命名为 HGBlock_Conv2Formers

class HGBlock_Conv2Formers(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = Conv2Formers(c1, c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y
 

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: Conv2Former HGBlock_Conv2Formers


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 Conv2Former.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .Conv2Former import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 Conv2Former HGBlock_Conv2Formers 模块

在这里插入图片描述

在这里插入图片描述

最后,还需在此文件添加如下代码:

elif m in [Conv2Formers]:
      c1, c2 = ch[f], args[0]
      if c2 != nc:  # if not outputss
          c2 = make_divisible(min(c2, max_channels) * width, 8)
      args = [c1, c2, *args[1:]]
      if m in [Conv2Formers]:
          args.insert(2, n)  # number of repeats
          n = 1

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-Conv2Former.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-Conv2Former.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 HGBlock模块 替换成 Conv2Formers模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, Conv2Formers, [512]] # cm, c2, k, light, shortcut
  - [-1, 6, Conv2Formers, [512]]
  - [-1, 6, Conv2Formers, [512]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_Conv2Formers.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_Conv2Formers.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 HGBlock模块 替换成 HGBlock_Conv2Formers模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_Conv2Formers, [192, 512, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_Conv2Formers, [192, 512, 5, True, True]]
  - [-1, 6, HGBlock_Conv2Formers, [192, 512, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 Conv2Formers HGBlock_Conv2Formers 已经加入到模型中,并可以进行训练了。

rtdetr-l-Conv2Formers

rtdetr-l-Conv2Formers summary: 949 layers, 52,490,563 parameters, 52,490,563 gradients, 170.7 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   8540160  ultralytics.nn.AddModules.Conv2Former.Conv2Formers[512, 512]                    
  6                  -1  6   8540160  ultralytics.nn.AddModules.Conv2Former.Conv2Formers[512, 512]                    
  7                  -1  6   8540160  ultralytics.nn.AddModules.Conv2Former.Conv2Formers[512, 512]                    
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-Conv2Formers summary: 949 layers, 52,490,563 parameters, 52,490,563 gradients, 170.7 GFLOPs

rtdetr-l-HGBlock_Conv2Formers

rtdetr-l-HGBlock_Conv2Formers summary: 755 layers, 33,764,035 parameters, 33,764,035 gradients, 111.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   2297984  ultralytics.nn.AddModules.Conv2Former.HGBlock_Conv2Formers[512, 192, 512, 5, 6, True, False]
  6                  -1  6   2297984  ultralytics.nn.AddModules.Conv2Former.HGBlock_Conv2Formers[512, 192, 512, 5, 6, True, True]
  7                  -1  6   2297984  ultralytics.nn.AddModules.Conv2Former.HGBlock_Conv2Formers[512, 192, 512, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_Conv2Formers summary: 755 layers, 33,764,035 parameters, 33,764,035 gradients, 111.0 GFLOPs