学习资源站

RT-DETR改进策略【Backbone主干网络】替换骨干网络为2023-CVPRConvNeXtV2(附网络详解和完整配置步骤)-

RT-DETR改进策略【Backbone/主干网络】| 替换骨干网络为2023-CVPR ConvNeXt V2 (附网络详解和完整配置步骤)

一、本文介绍

本文记录的是 将ConvNeXt V2应用到RT-DETR中的改进方法研究 。本文将 ConvNeXt V2 应用于 RT-DETR ,一方面利用 全卷积掩码自动编码器 在训练时优化特征学习, 减少模型对大规模标注数据的依赖 ;另一方面,通过 全局响应归一化层 增强特征竞争, 缓解特征坍塌问题 ,提高特征多样性。

本文在 RT-DETR 的基础上配置了原论文中 convnextv2_atto', 'convnextv2_femto , convnextv2_pico , convnextv2_nano , convnextv2_tiny , convnextv2_base , convnextv2_large , convnextv2_huge 八种模型,以满足不同的需求。



二、ConvNeXt V2介绍

ConvNeXt V2: Co-designing and Scaling ConvNets with Masked Autoencoders

ConvNeXt V2 是一种全新 的ConvNet 模型家族,旨在 提升纯卷积神经网络在各类下游任务中的性能 。它在模型结构设计上有独特的出发点,结构原理涉及多个创新组件,并且在性能上展现出显著优势。

2.1 设计出发点

  • 架构与自监督学习结合的挑战 :视觉识别领域中,神经网络架构和自监督学习框架对模型性能至关重要。将ConvNeXt与掩码自动编码器(MAE)结合时存在挑战,MAE的编解码器设计针对Transformer的序列处理能力优化,与使用密集滑动窗口的标准ConvNets不兼容。直接将两者结合,未考虑架构与训练目标的关系,难以达到最优性能。先前研究也表明,用基于掩码的自监督学习训练ConvNets存在困难。
  • 特征坍塌问题 :对ConvNeXt进行特征空间分析时发现,直接在掩码输入上训练ConvNeXt,MLP层存在特征坍塌现象,即许多特征图处于死亡或饱和状态,通道间激活冗余,这影响了模型的性能。

2.2 结构原理

  • 全卷积掩码自动编码器(FCMAE) :采用随机掩码策略,掩码率为0.6,在最后阶段生成掩码并递归上采样到最高分辨率。使用ConvNeXt模型作为编码器,从“稀疏数据视角”出发,将标准卷积层转换为子流形稀疏卷积,使模型仅对可见数据点操作,解决掩码图像建模中信息泄漏问题。解码器采用轻量级的ConvNeXt块,整体形成非对称编解码器架构。计算重建图像与目标图像的均方误差(MSE),仅在掩码区域应用损失。

在这里插入图片描述

  • 全局响应归一化(GRN) :为解决特征坍塌问题提出GRN层。该层通过全局特征聚合、特征归一化和特征校准三个步骤,增强通道间的特征竞争。

在这里插入图片描述

具体来说,先使用L2范数进行全局特征聚合,再通过除法归一化计算通道的相对重要性,最后校准原始输入响应。将GRN层融入ConvNeXt块,并去除LayerScale,形成ConvNeXt V2模型家族。

2.3 优势

  • 性能提升显著 :在ImageNet分类、COCO检测和ADE20K分割等多种下游任务中,ConvNeXt V2模型性能相比ConvNeXt V1有显著提升。
  • 有效缓解特征坍塌 :通过可视化和余弦距离分析可知,ConvNeXt V2有效缓解了特征坍塌问题,各层的余弦距离值较高,表明特征多样性得以保持,学习行为与MAE预训练的ViT模型相似。
  • 模型扩展性强 :评估了从低容量的 3.7M Atto模型 到高容量的 650M Huge模型 等一系列不同尺寸的模型,结果表明模型具有良好的扩展性,在所有模型尺寸上,微调结果均优于完全监督的对应模型,首次在广泛的模型范围内展示了掩码图像建模的有效性和高效性。

论文: https://arxiv.org/pdf/2301.00808
源码: https://github.com/facebookresearch/ConvNeXt-V2

三、ConvNeXt V2的实现代码

ConvNeXt V2 的实现代码如下:

# Copyright (c) Meta Platforms, Inc. and affiliates.

# All rights reserved.

# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import trunc_normal_, DropPath

__all__ = ['convnextv2_atto', 'convnextv2_femto', 'convnextv2_pico', 'convnextv2_nano', 'convnextv2_tiny', 'convnextv2_base', 'convnextv2_large', 'convnextv2_huge']

class LayerNorm(nn.Module):
    """ LayerNorm that supports two data formats: channels_last (default) or channels_first. 
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with 
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs 
    with shape (batch_size, channels, height, width).
    """
    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError 
        self.normalized_shape = (normalized_shape, )
    
    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None, None] * x + self.bias[:, None, None]
            return x

class GRN(nn.Module):
    """ GRN (Global Response Normalization) layer
    """
    def __init__(self, dim):
        super().__init__()
        self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
        self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))

    def forward(self, x):
        Gx = torch.norm(x, p=2, dim=(1,2), keepdim=True)
        Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
        return self.gamma * (x * Nx) + self.beta + x

class Block(nn.Module):
    """ ConvNeXtV2 Block.
    
    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
    """
    def __init__(self, dim, drop_path=0.):
        super().__init__()
        self.dwconv = nn.Conv2d(dim, dim, kernel_size=7, padding=3, groups=dim) # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(dim, 4 * dim) # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.grn = GRN(4 * dim)
        self.pwconv2 = nn.Linear(4 * dim, dim)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.grn(x)
        x = self.pwconv2(x)
        x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)

        x = input + self.drop_path(x)
        return x

class ConvNeXtV2(nn.Module):
    """ ConvNeXt V2
        
    Args:
        in_chans (int): Number of input image channels. Default: 3
        num_classes (int): Number of classes for classification head. Default: 1000
        depths (tuple(int)): Number of blocks at each stage. Default: [3, 3, 9, 3]
        dims (int): Feature dimension at each stage. Default: [96, 192, 384, 768]
        drop_path_rate (float): Stochastic depth rate. Default: 0.
        head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
    """
    def __init__(self, in_chans=3, num_classes=1000, 
                 depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], 
                 drop_path_rate=0., head_init_scale=1.
                 ):
        super().__init__()
        self.depths = depths
        self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers
        stem = nn.Sequential(
            nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first")
        )
        self.downsample_layers.append(stem)
        for i in range(3):
            downsample_layer = nn.Sequential(
                    LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                    nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2),
            )
            self.downsample_layers.append(downsample_layer)

        self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiple residual blocks
        dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] 
        cur = 0
        for i in range(4):
            stage = nn.Sequential(
                *[Block(dim=dims[i], drop_path=dp_rates[cur + j]) for j in range(depths[i])]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = nn.LayerNorm(dims[-1], eps=1e-6) # final norm layer
        self.head = nn.Linear(dims[-1], num_classes)

        self.apply(self._init_weights)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def forward(self, x):
        res = []
        for i in range(4):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)
            res.append(x)
        return res

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

def convnextv2_atto(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[40, 80, 160, 320], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_femto(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[48, 96, 192, 384], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_pico(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 6, 2], dims=[64, 128, 256, 512], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_nano(weights='', **kwargs):
    model = ConvNeXtV2(depths=[2, 2, 8, 2], dims=[80, 160, 320, 640], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_tiny(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 9, 3], dims=[96, 192, 384, 768], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_base(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_large(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model

def convnextv2_huge(weights='', **kwargs):
    model = ConvNeXtV2(depths=[3, 3, 27, 3], dims=[352, 704, 1408, 2816], **kwargs)
    if weights:
        model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)['model']))
    return model
 

四、修改步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 ConvNeXtV2.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .ConvNeXtV2 import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

① 首先:导入模块

在这里插入图片描述

② 其次:在 parse_model函数 的如下位置添加两行代码:

在这里插入图片描述

backbone = False
t=m

在这里插入图片描述

③ 接着,在此函数下添加如下代码:

elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,}:
    m = m(*args)
    c2 = m.channel 
    backbone = True

在这里插入图片描述

④ 然后,将下方红框内的代码全部替换:

if isinstance(c2, list):
    is_backbone = True
    m_ = m
    m_.backbone = True
else:
    m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
    t = str(m)[8:-2].replace('__main__.', '')  # module type
m.np = sum(x.numel() for x in m_.parameters())  # number params
m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
if verbose:
    LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<45}{str(args):<30}')  # print
save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if
            x != -1)  # append to savelist
layers.append(m_)
if i == 0:
    ch = []
if isinstance(c2, list):
    ch.extend(c2)
    for _ in range(5 - len(ch)):
        ch.insert(0, 0)
else:
    ch.append(c2)

替换后如下:

在这里插入图片描述

⑤ 在此文件下找到 base_model _predict_once ,并将其替换成如下代码。

def _predict_once(self, x, profile=False, visualize=False, embed=None):
    y, dt, embeddings = [], [], []  # outputs
    for m in self.model:
        if m.f != -1:  # if not from previous layer
            x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
        if profile:
            self._profile_one_layer(m, x, dt)
        if hasattr(m, 'backbone'):
            x = m(x)
            if len(x) != 5:  # 0 - 5
                x.insert(0, None)
            for index, i in enumerate(x):
                if index in self.save:
                    y.append(i)
                else:
                    y.append(None)
            x = x[-1]  # 最后一个输出传给下一层
        else:
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
        if visualize:
            feature_visualization(x, m.type, m.i, save_dir=visualize)
        if embed and m.i in embed:
            embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
            if m.i == max(embed):
                return torch.unbind(torch.cat(embeddings, 1), dim=0)
    return x

在这里插入图片描述

至此就修改完成了,可以配置模型开始训练了


五、yaml模型文件

5.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-ConvNeXtV2.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-ConvNeXtV2.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 替换成 convnextv2_atto

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, convnextv2_atto, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)


六、成功运行结果

分别打印网络模型可以看到 ConvNeXtV2 已经加入到模型中,并可以进行训练了。

rtdetr-l-ConvNeXtV2

rtdetr-l-ConvNeXtV2 summary: 487 layers, 22,189,011 parameters, 22,189,011 gradients, 69.5 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1   3708400  convnextv2_atto                              []                            
  1                  -1  1     82432  ultralytics.nn.modules.conv.Conv             [320, 256, 1, 1, None, 1, 1, False]
  2                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  3                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  4                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  5                   3  1     41472  ultralytics.nn.modules.conv.Conv             [160, 256, 1, 1, None, 1, 1, False]
  6            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
  7                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
  8                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  9                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 10                   2  1     20992  ultralytics.nn.modules.conv.Conv             [80, 256, 1, 1, None, 1, 1, False]
 11            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 13                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 14            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 17             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 19        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-ConvNeXtV2 summary: 487 layers, 22,189,011 parameters, 22,189,011 gradients, 69.5 GFLOPs