RT-DETR改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
一、本文介绍
本文记录的是
基于CAA注意力模块的RT-DETR目标检测改进方法研究
。
在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题
。
CAA
能够有效捕捉长距离依赖,并且参数量和计算量更少。
二、CAA原理
Poly Kernel Inception Network for Remote Sensing Detection
CAA(Context Anchor Attention)注意力
的设计原理和优势如下:
2.1 原理
-
采用
平均池化和1×1卷积来获取局部区域特征:对输入特征进行平均池化,然后通过1×1卷积得到局部区域特征。 -
使用深度可分离的条形卷积来近似标准大核深度可分离卷积:通过两个深度可分离的条形卷积来扩大感受野,并且这种设计基于两个考虑。首先,条形卷积是轻量级的,与传统的大核
2D深度可分离卷积相比,使用几个1D深度可分离核可以达到类似的效果,同时参数减少了 k b / 2 kb/2 kb /2 。其次,条形卷积有助于识别和提取细长形状物体(如桥梁)的特征。 -
随着
CAA模块所属的PKI块深度增加,增大条形卷积的核大小( k b = 11 + 2 × l kb = 11 + 2×l kb = 11 + 2 × l ),以增强PKINet建立长距离像素间关系的能力,同时由于条形深度可分离设计,不会显著增加计算成本。 -
最后,
CAA模块产生一个注意力权重,用于增强PKI模块的输出特征。具体来说,通过Sigmoid函数确保注意力图在范围 ( 0 , 1 ) (0, 1) ( 0 , 1 ) 内,然后通过元素点乘和元素求和操作来增强特征。
2.2 优势
- 有效捕捉长距离依赖 :通过合适的核大小设置,能够更好地捕捉长距离像素间的依赖关系,相比于较小核大小的情况,能提升模型性能,因为较小核无法有效捕获长距离依赖,而较大核可以包含更多上下文信息。
-
轻量化
:条形卷积的设计使得
CAA模块具有轻量化的特点,减少了参数数量和计算量。 -
增强特征提取
:当在
PKINet的任何阶段使用CAA模块时,都能带来性能提升,当在所有阶段部署CAA模块时,性能增益达到 1.03 % 1.03\% 1.03% ,这表明CAA模块能够有效地增强模型对特征的提取能力。
论文: https://arxiv.org/pdf/2403.06258
源码: https://github.com/NUST-Machine-Intelligence-Laboratory/PKINet
三、CAA的实现代码
CAA模块
的实现代码如下:
from typing import Optional
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
import torch
import torch.nn as nn
from ultralytics.nn.modules.conv import LightConv
class CAA(BaseModule):
"""Context Anchor Attention"""
def __init__(
self,
channels: int,
h_kernel_size: int = 11,
v_kernel_size: int = 11,
norm_cfg: Optional[dict] = dict(type='BN', momentum=0.03, eps=0.001),
act_cfg: Optional[dict] = dict(type='SiLU'),
init_cfg: Optional[dict] = None,
):
super().__init__(init_cfg)
self.avg_pool = nn.AvgPool2d(7, 1, 3)
self.conv1 = ConvModule(channels, channels, 1, 1, 0,
norm_cfg=norm_cfg, act_cfg=act_cfg)
self.h_conv = ConvModule(channels, channels, (1, h_kernel_size), 1,
(0, h_kernel_size // 2), groups=channels,
norm_cfg=None, act_cfg=None)
self.v_conv = ConvModule(channels, channels, (v_kernel_size, 1), 1,
(v_kernel_size // 2, 0), groups=channels,
norm_cfg=None, act_cfg=None)
self.conv2 = ConvModule(channels, channels, 1, 1, 0,
norm_cfg=norm_cfg, act_cfg=act_cfg)
self.act = nn.Sigmoid()
def forward(self, x):
attn_factor = self.act(self.conv2(self.v_conv(self.h_conv(self.conv1(self.avg_pool(x))))))
return attn_factor
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class HGBlock_CAA(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = CAA(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
四、创新模块
4.1 改进点⭐
模块改进方法
:
1️⃣ 加入
CAA模块
。
CAA模块
添加后如下:
2️⃣:加入基于
CAA模块
的
HGBlock
。利用
CAA
改进
HGBlock
模块,
使模型能够更好地捕捉长距离像素间的依赖关系。
改进代码如下:
class HGBlock_CAA(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = CAA(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
注意❗:需要声明的模块名称为:
HGBlock_CAA
。
五、添加步骤
5.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
CAA.py
,将
第三节
中的代码粘贴到此处
5.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .CAA import *
5.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
HGBlock_CAA
模块
六、yaml模型文件
6.1 模型改进版本⭐
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-HGBlock_CAA.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-HGBlock_CAA.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
中的部分
HGBlock模块
替换成
HGBlock_CAA模块
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock_CAA, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock_CAA, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock_CAA, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
六、成功运行结果
分别打印网络模型可以看到
HGBlock_CAA
已经加入到模型中,并可以进行训练了。
rtdetr-l-HGBlock_CAA :
rtdetr-l-HGBlock_CAA summary: 727 layers, 39,185,603 parameters, 39,185,603 gradients, 128.4 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 3821184 ultralytics.nn.AddModules.CAA.HGBlock_CAA [512, 192, 1024, 5, 6, True, False]
6 -1 6 4181632 ultralytics.nn.AddModules.CAA.HGBlock_CAA [1024, 192, 1024, 5, 6, True, True]
7 -1 6 4181632 ultralytics.nn.AddModules.CAA.HGBlock_CAA [1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
10 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
11 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
22 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
23 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
25 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
26 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
28 [21, 24, 27] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-HGBlock_CAA summary: 727 layers, 39,185,603 parameters, 39,185,603 gradients, 128.4 GFLOPs