学习资源站

RT-DETR改进策略【注意力机制篇】CVPR2024CAA上下文锚点注意力机制-

RT-DETR改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制

一、本文介绍

本文记录的是 基于CAA注意力模块的RT-DETR目标检测改进方法研究 在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题 CAA 能够有效捕捉长距离依赖,并且参数量和计算量更少。



二、CAA原理

Poly Kernel Inception Network for Remote Sensing Detection

CAA(Context Anchor Attention)注意力 的设计原理和优势如下:

2.1 原理

  • 采用 平均池化 1×1卷积 来获取局部区域特征:对输入特征进行平均池化,然后通过1×1卷积得到局部区域特征。
  • 使用深度可分离的条形卷积来近似标准大核深度可分离卷积:通过两个深度可分离的条形卷积来扩大感受野,并且这种设计基于两个考虑。首先,条形卷积是轻量级的,与传统的大核 2D深度可分离卷积 相比,使用几个 1D深度可分离核 可以达到类似的效果,同时参数减少了 k b / 2 kb/2 kb /2 。其次,条形卷积有助于识别和提取细长形状物体(如桥梁)的特征。
  • 随着 CAA模块 所属的 PKI块 深度增加,增大条形卷积的核大小( k b = 11 + 2 × l kb = 11 + 2×l kb = 11 + 2 × l ),以增强 PKINet 建立长距离像素间关系的能力,同时由于条形深度可分离设计,不会显著增加计算成本。
  • 最后, CAA模块 产生一个注意力权重,用于增强 PKI模块 的输出特征。具体来说,通过 Sigmoid函数 确保注意力图在范围 ( 0 , 1 ) (0, 1) ( 0 , 1 ) 内,然后通过元素点乘和元素求和操作来增强特征。

在这里插入图片描述

2.2 优势

  • 有效捕捉长距离依赖 :通过合适的核大小设置,能够更好地捕捉长距离像素间的依赖关系,相比于较小核大小的情况,能提升模型性能,因为较小核无法有效捕获长距离依赖,而较大核可以包含更多上下文信息。
  • 轻量化 :条形卷积的设计使得 CAA模块 具有轻量化的特点,减少了参数数量和计算量。
  • 增强特征提取 :当在 PKINet 的任何阶段使用 CAA模块 时,都能带来性能提升,当在所有阶段部署 CAA模块 时,性能增益达到 1.03 % 1.03\% 1.03% ,这表明 CAA 模块能够有效地增强模型对特征的提取能力。

论文: https://arxiv.org/pdf/2403.06258
源码: https://github.com/NUST-Machine-Intelligence-Laboratory/PKINet

三、CAA的实现代码

CAA模块 的实现代码如下:

from typing import Optional
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
import torch
import torch.nn as nn

from ultralytics.nn.modules.conv import LightConv

class CAA(BaseModule):
    """Context Anchor Attention"""
    def __init__(
            self,
            channels: int,
            h_kernel_size: int = 11,
            v_kernel_size: int = 11,
            norm_cfg: Optional[dict] = dict(type='BN', momentum=0.03, eps=0.001),
            act_cfg: Optional[dict] = dict(type='SiLU'),
            init_cfg: Optional[dict] = None,
    ):
        super().__init__(init_cfg)
        self.avg_pool = nn.AvgPool2d(7, 1, 3)
        self.conv1 = ConvModule(channels, channels, 1, 1, 0,
                                norm_cfg=norm_cfg, act_cfg=act_cfg)
        self.h_conv = ConvModule(channels, channels, (1, h_kernel_size), 1,
                                 (0, h_kernel_size // 2), groups=channels,
                                 norm_cfg=None, act_cfg=None)
        self.v_conv = ConvModule(channels, channels, (v_kernel_size, 1), 1,
                                 (v_kernel_size // 2, 0), groups=channels,
                                 norm_cfg=None, act_cfg=None)
        self.conv2 = ConvModule(channels, channels, 1, 1, 0,
                                norm_cfg=norm_cfg, act_cfg=act_cfg)
        self.act = nn.Sigmoid()

    def forward(self, x):
        attn_factor = self.act(self.conv2(self.v_conv(self.h_conv(self.conv1(self.avg_pool(x))))))
        return attn_factor

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class HGBlock_CAA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = CAA(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

四、创新模块

4.1 改进点⭐

模块改进方法
1️⃣ 加入 CAA模块 CAA模块 添加后如下:

在这里插入图片描述

2️⃣:加入基于 CAA模块 HGBlock 。利用 CAA 改进 HGBlock 模块, 使模型能够更好地捕捉长距离像素间的依赖关系。

改进代码如下:

class HGBlock_CAA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = CAA(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

注意❗:需要声明的模块名称为: HGBlock_CAA


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 CAA.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .CAA import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 HGBlock_CAA 模块

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_CAA.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_CAA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的部分 HGBlock模块 替换成 HGBlock_CAA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_CAA, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_CAA, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock_CAA, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


六、成功运行结果

分别打印网络模型可以看到 HGBlock_CAA 已经加入到模型中,并可以进行训练了。

rtdetr-l-HGBlock_CAA

rtdetr-l-HGBlock_CAA summary: 727 layers, 39,185,603 parameters, 39,185,603 gradients, 128.4 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   3821184  ultralytics.nn.AddModules.CAA.HGBlock_CAA    [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   4181632  ultralytics.nn.AddModules.CAA.HGBlock_CAA    [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   4181632  ultralytics.nn.AddModules.CAA.HGBlock_CAA    [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_CAA summary: 727 layers, 39,185,603 parameters, 39,185,603 gradients, 128.4 GFLOPs