学习资源站

RT-DETR改进策略【注意力机制篇】CVPRW-2024分层互补注意力混合层H-RAMi针对低质量图像的特征提取模块-

RT-DETR改进策略【注意力机制篇】| CVPRW-2024 分层互补注意力混合层 H-RAMi 针对低质量图像的特征提取模块

一、本文介绍

本文记录的是 利用 H-RAMi 模块优化 RT-DETR 的目标检测网络模型 H-RAMi 结合了对来自分层编码器阶段的 多尺度注意力 的处理能力和对 语义信息 的利用能力, 有效地补偿了因下采样特征导致的像素级信息损失 。本文将其应用到 RT-DETR 中,并进行 二次创新 ,使网络能够在处理具有 复杂结构或丰富语义信息的图像 时,提升对 不同尺度和不同内容的图像区域的恢复能力



二、H-RAMi 介绍

2.1 设计出发点

  • 许多证据表明层次化网络对图像恢复(IR)任务通常不太有效,因为IR的目标是逐个预测像素值(密集预测),而缩小特征图会丢失重要的像素级信息。然而, 层次化结构有降低时间复杂度以及学习语义级和像素级特征表示的优点 。为了弥补缺点并利用优点,设计了 H - RAMi 层。

2.2 原理

  • H - RAMi 层通过对来自分层编码器阶段的注意力进行处理, 补偿因下采样特征导致的像素级信息损失 ,并利用语义级信息。它将不同层次阶段的多尺度注意力进行混合,重新考虑在给定输入特征图中应关注的位置和程度。

2.3 结构

  • 如图c所示, H - RAMi 接收来自分层阶段 1 2 3 4 中最后 D - RAMiT 块在**层归一化(LN)**之前由 MobiVari 合并的注意力。它首先将混合的二维注意力(输入)的分辨率上采样到 H × W H×W H × W ,然后将它们连接并由 MobiVari 混合。

在这里插入图片描述

2.4 优势

  • 提高图像恢复精度 :从图可以看出,阶段4的输出(b)在细粒度区域产生相对不清晰的边缘,这是由于像素级信息不如非层次化网络丰富。而 H - RAMi 通过利用 像素级 语义级 信息,在(c)处重建了关注区域并产生更清晰的边界,使得重新关注的特征图(d)包含更明显的边界,从而 提高图像恢复精度

在这里插入图片描述

  • 高效利用资源 H - RAMi 在提高模型性能的同时, 所需的额外操作和参数很少 ,分别最多只占总成本的3.01%和2.25%。

论文: https://arxiv.org/pdf/2305.11474
源码: https://github.com/rami0205/RAMiT

三、HRAMi的实现代码

HRAMi 及其改进的实现代码如下:

import torch.nn as nn
import torch
import torch.nn.functional as F
 
class MobiVari1(nn.Module):  # MobileNet v1 Variants
    def __init__(self, dim, kernel_size, stride, act=nn.LeakyReLU, out_dim=None):
        super(MobiVari1, self).__init__()
        self.dim = dim
        self.kernel_size = kernel_size
        self.out_dim = out_dim or dim
 
        self.dw_conv = nn.Conv2d(dim, dim, kernel_size, stride, kernel_size // 2, groups=dim)
        self.pw_conv = nn.Conv2d(dim, self.out_dim, 1, 1, 0)
        self.act = act()
 
    def forward(self, x):
        out = self.act(self.pw_conv(self.act(self.dw_conv(x)) + x))
        return out + x if self.dim == self.out_dim else out
 
    def flops(self, resolutions):
        H, W = resolutions
        flops = H * W * self.kernel_size * self.kernel_size * self.dim + H * W * 1 * 1 * self.dim * self.out_dim  # self.dw_conv + self.pw_conv
        return flops

class MobiVari2(MobiVari1):  # MobileNet v2 Variants
    def __init__(self, dim, kernel_size, stride, act=nn.LeakyReLU, out_dim=None, exp_factor=1.2, expand_groups=4):
        super(MobiVari2, self).__init__(dim, kernel_size, stride, act, out_dim)
        self.expand_groups = expand_groups
        expand_dim = int(dim * exp_factor)
        expand_dim = expand_dim + (expand_groups - expand_dim % expand_groups)
        self.expand_dim = expand_dim
 
        self.exp_conv = nn.Conv2d(dim, self.expand_dim, 1, 1, 0, groups=expand_groups)
        self.dw_conv = nn.Conv2d(expand_dim, expand_dim, kernel_size, stride, kernel_size // 2, groups=expand_dim)
        self.pw_conv = nn.Conv2d(expand_dim, self.out_dim, 1, 1, 0)
 
    def forward(self, x):
        x1 = self.act(self.exp_conv(x))
        out = self.pw_conv(self.act(self.dw_conv(x1) + x1))
        return out + x if self.dim == self.out_dim else out
 
    def flops(self, resolutions):
        H, W = resolutions
        flops = H * W * 1 * 1 * (self.dim // self.expand_groups) * self.expand_dim  # self.exp_conv
        flops += H * W * self.kernel_size * self.kernel_size * self.expand_dim  # self.dw_conv
        flops += H * W * 1 * 1 * self.expand_dim * self.out_dim  # self.pw_conv
        return flops
 
class HRAMi(nn.Module):
    def __init__(self, dim, kernel_size=3, stride=1, mv_ver=1, mv_act=nn.LeakyReLU, exp_factor=1.2, expand_groups=4):
        super(HRAMi, self).__init__()
 
        self.dim = dim
        self.kernel_size = kernel_size
 
        if mv_ver == 1:
            self.mobivari = MobiVari1(dim, kernel_size, stride, act=mv_act, out_dim=dim)
        elif mv_ver == 2:
            self.mobivari = MobiVari2(dim, kernel_size, stride, act=mv_act, out_dim=dim,
                                      exp_factor=2., expand_groups=1)
 
    def forward(self, attn_list):
        # for i, attn in enumerate(attn_list[:-1]):
        #     attn = F.pixel_shuffle(attn, 2 ** i)
        #     x = attn if i == 0 else torch.cat([x, attn], dim=1)
        # x = torch.cat([attn_list[0], attn_list[1]], dim=1) 
        x = self.mobivari(attn_list)
        return x
 
    def flops(self, resolutions):
        return self.mobivari.flops(resolutions)

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = HRAMi(c2)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))

class ResNetLayer_HRAMi(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)
 

四、创新模块

4.1 改进点1⭐

模块改进方法 :直接加入 HRAMi模块 第五节讲解添加步骤 )。

HRAMi模块 添加后如下:

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 HRAMi模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进,并将 HRAMi 在加入到 ResNetLayer 模块中。

改进代码如下:

ResNetLayer 模块中加入 HRAMi模块 ,并重命名为: ResNetLayer_HRAMi

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = HRAMi(c2)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))

class ResNetLayer_HRAMi(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)
 

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: ResNetLayer_HRAMi


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 HRAMi.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .HRAMi import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 ResNetLayer_HRAMi 模块

在这里插入图片描述

在这里插入图片描述

最后:在 parse_model函数 中添加如下代码

elif m is HRAMi:
    args = [ch[f]]

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本1

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HRAMi.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HRAMi.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 HGBlock 替换成 HRAMi

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HRAMi, []] # cm, c2, k, light, shortcut
  - [-1, 6, HRAMi, []]
  - [-1, 6, HRAMi, []] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_HRAMi.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_HRAMi.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 ResNetLayer模块 替换成 ResNetLayer_HRAMi模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_HRAMi, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_HRAMi, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_HRAMi, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_HRAMi, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_HRAMi, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 HRAMi ResNetLayer_HRAMi 已经加入到模型中,并可以进行训练了。

rtdetr-l-HRAMi

rtdetr-l-HRAMi summary: 606 layers, 31,690,051 parameters, 31,690,051 gradients, 104.3 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1606656  ultralytics.nn.AddModules.HRAMi.HRAMi        [512]                         
  6                  -1  6   1606656  ultralytics.nn.AddModules.HRAMi.HRAMi        [512]                         
  7                  -1  6   1606656  ultralytics.nn.AddModules.HRAMi.HRAMi        [512]                         
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HRAMi summary: 606 layers, 31,690,051 parameters, 31,690,051 gradients, 104.3 GFLOPs

rtdetr-ResNetLayer_HRAMi

rtdetr-ResNetLayer_HRAMi summary: 673 layers, 44,061,795 parameters, 44,061,795 gradients, 134.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.HRAMi.ResNetLayer_HRAMi[3, 64, 1, True, 1]           
  1                  -1  1    230208  ultralytics.nn.AddModules.HRAMi.ResNetLayer_HRAMi[64, 64, 1, False, 3]         
  2                  -1  1   1290752  ultralytics.nn.AddModules.HRAMi.ResNetLayer_HRAMi[256, 128, 2, False, 4]       
  3                  -1  1   7508480  ultralytics.nn.AddModules.HRAMi.ResNetLayer_HRAMi[512, 256, 2, False, 6]       
  4                  -1  1  15768064  ultralytics.nn.AddModules.HRAMi.ResNetLayer_HRAMi[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_HRAMi summary: 673 layers, 44,061,795 parameters, 44,061,795 gradients, 134.0 GFLOPs