学习资源站

RT-DETR改进策略【Conv和Transformer】ACmix卷积和自注意力的结合,充分发挥两者优势-

RT-DETR改进策略【Conv和Transformer】| ACmix 卷积和自注意力的结合,充分发挥两者优势

一、本文介绍

本文记录的是 利用 ACmix 改进 RT-DETR 检测模型 卷积 自注意力 是两种强大的表示学习技术,本文利用两者之间潜在的紧密关系,进行二次创新,实现优势互补,减少冗余,通过实验证明,实现模型有效涨点。



二、ACmix介绍

On the Integration of Self-Attention and Convolution

2.1 原理

2.1.1 卷积分解

传统的卷积可以分解为多个 1 × 1 1×1 1 × 1 卷积,然后是位移和求和操作。例如对于一个 k × k k×k k × k 的卷积核,可分解为 k 2 k^{2} k 2 1 × 1× 1 × 卷积。

2.1.2 自注意力解释

自注意力模块中查询、键和值的投影可以看作是多个 1 × 1 1×1 1 × 1 卷积,然后计算注意力权重并聚合值。

2.1.3 相似性及主导计算复杂度

两个模块的第一阶段都包含类似的 1 × 1 1×1 1 × 1 卷积操作,并且这个第一阶段相比第二阶段在计算复杂度上占主导地位(与通道大小的平方相关),这为整合提供了理论基础。

2.2 结构

  • 第一阶段 :输入特征图通过三个 1 × 1 1×1 1 × 1 卷积进行投影并重塑为 N N N 块,得到一组丰富的中间特征,包含 3 × N 3×N 3 × N 个特征图。
  • 第二阶段
    • 自注意力路径 :将中间特征收集为 N N N 组,每组包含三个特征(来自每个 1 × 1 1×1 1 × 1 卷积),作为查询、键和值,按照传统的多头自注意力模块进行处理。
    • 卷积路径 :对于卷积核大小为 k k k 的情况,采用一个轻量级全连接层并生成 k 2 k^{2} k 2 个特征图,然后通过位移和聚合这些特征来处理输入特征,从局部感受野收集信息。
    • 最终输出 :两条路径的输出相加,其强度由两个可学习的标量 α \alpha α β \beta β 控制,即 F o u t = α F a t t + β F c o n v F_{out}=\alpha F_{att}+\beta F_{conv} F o u t = α F a tt + β F co n v

2.3 优势

  • 计算效率
    • 理论上,在第一阶段的计算复杂度与通道大小相关,相比传统卷积(如 3 × 3 3×3 3 × 3 卷积),在第一阶段的计算成本与自注意力相似且更轻。在第二阶段虽然有额外计算开销,但复杂度与通道大小呈线性关系且相对第一阶段较小。
    • 通过改进位移和求和操作,如采用深度可分离卷积替代低效的张量位移,提高了模块的实际计算效率。
  • 性能优势 :在图像识别和下游任务(如图像分类、语义分割和目标检测)上,与竞争基准相比,模型取得了持续改进的结果。
  • 灵活性和通用性
    • 模型可以自适应地调整卷积和自注意力路径的强度,根据网络中滤波器的位置灵活组合两个模块。
    • 可以应用于多种自注意力模式,如Patchwise attention、Window attention和Global attention等变体。

论文: https://arxiv.org/pdf/2111.14556
源码: https://github.com/LeapLabTHU/ACmix

三、ACmix的实现代码

ACmix模块 的实现代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F

def position(H, W, is_cuda=True):
    if is_cuda:
        loc_w = torch.linspace(-1.0, 1.0, W).cuda().unsqueeze(0).repeat(H, 1)
        loc_h = torch.linspace(-1.0, 1.0, H).cuda().unsqueeze(1).repeat(1, W)
    else:
        loc_w = torch.linspace(-1.0, 1.0, W).unsqueeze(0).repeat(H, 1)
        loc_h = torch.linspace(-1.0, 1.0, H).unsqueeze(1).repeat(1, W)
    loc = torch.cat([loc_w.unsqueeze(0), loc_h.unsqueeze(0)], 0).unsqueeze(0)
    return loc

def stride(x, stride):
    b, c, h, w = x.shape
    return x[:, :, ::stride, ::stride]

def init_rate_half(tensor):
    if tensor is not None:
        tensor.data.fill_(0.5)

def init_rate_0(tensor):
    if tensor is not None:
        tensor.data.fill_(0.)

class ACmix(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_att=7, head=2, kernel_conv=3, stride=1, dilation=1):
        super(ACmix, self).__init__()
        self.in_planes = in_planes
        self.out_planes = out_planes
        self.head = head
        self.kernel_att = kernel_att
        self.kernel_conv = kernel_conv
        self.stride = stride
        self.dilation = dilation
        self.rate1 = torch.nn.Parameter(torch.Tensor(1))
        self.rate2 = torch.nn.Parameter(torch.Tensor(1))
        self.head_dim = self.out_planes // self.head

        self.conv1 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv2 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv3 = nn.Conv2d(in_planes, out_planes, kernel_size=1)
        self.conv_p = nn.Conv2d(2, self.head_dim, kernel_size=1)

        self.padding_att = (self.dilation * (self.kernel_att - 1) + 1) // 2
        self.pad_att = torch.nn.ReflectionPad2d(self.padding_att)
        self.unfold = nn.Unfold(kernel_size=self.kernel_att, padding=0, stride=self.stride)
        self.softmax = torch.nn.Softmax(dim=1)

        self.fc = nn.Conv2d(3 * self.head, self.kernel_conv * self.kernel_conv, kernel_size=1, bias=False)
        self.dep_conv = nn.Conv2d(self.kernel_conv * self.kernel_conv * self.head_dim, out_planes,
                                  kernel_size=self.kernel_conv, bias=True, groups=self.head_dim, padding=1,
                                  stride=stride)

        self.reset_parameters()

    def reset_parameters(self):
        init_rate_half(self.rate1)
        init_rate_half(self.rate2)
        kernel = torch.zeros(self.kernel_conv * self.kernel_conv, self.kernel_conv, self.kernel_conv)
        for i in range(self.kernel_conv * self.kernel_conv):
            kernel[i, i // self.kernel_conv, i % self.kernel_conv] = 1.
        kernel = kernel.squeeze(0).repeat(self.out_planes, 1, 1, 1)
        self.dep_conv.weight = nn.Parameter(data=kernel, requires_grad=True)
        self.dep_conv.bias = init_rate_0(self.dep_conv.bias)

    def forward(self, x):
        q, k, v = self.conv1(x), self.conv2(x), self.conv3(x)
        scaling = float(self.head_dim) ** -0.5
        b, c, h, w = q.shape
        h_out, w_out = h // self.stride, w // self.stride

        # ### att
        # ## positional encoding
        pe = self.conv_p(position(h, w, x.is_cuda))

        q_att = q.view(b * self.head, self.head_dim, h, w) * scaling
        k_att = k.view(b * self.head, self.head_dim, h, w)
        v_att = v.view(b * self.head, self.head_dim, h, w)

        if self.stride > 1:
            q_att = stride(q_att, self.stride)
            q_pe = stride(pe, self.stride)
        else:
            q_pe = pe

        unfold_k = self.unfold(self.pad_att(k_att)).view(b * self.head, self.head_dim,
                                                         self.kernel_att * self.kernel_att, h_out,
                                                         w_out)  # b*head, head_dim, k_att^2, h_out, w_out
        unfold_rpe = self.unfold(self.pad_att(pe)).view(1, self.head_dim, self.kernel_att * self.kernel_att, h_out,
                                                        w_out)  # 1, head_dim, k_att^2, h_out, w_out

        att = (q_att.unsqueeze(2) * (unfold_k + q_pe.unsqueeze(2) - unfold_rpe)).sum(
            1)  # (b*head, head_dim, 1, h_out, w_out) * (b*head, head_dim, k_att^2, h_out, w_out) -> (b*head, k_att^2, h_out, w_out)
        att = self.softmax(att)

        out_att = self.unfold(self.pad_att(v_att)).view(b * self.head, self.head_dim, self.kernel_att * self.kernel_att,
                                                        h_out, w_out)
        out_att = (att.unsqueeze(1) * out_att).sum(2).view(b, self.out_planes, h_out, w_out)

        ## conv
        f_all = self.fc(torch.cat(
            [q.view(b, self.head, self.head_dim, h * w), k.view(b, self.head, self.head_dim, h * w),
             v.view(b, self.head, self.head_dim, h * w)], 1))
        f_conv = f_all.permute(0, 2, 1, 3).reshape(x.shape[0], -1, x.shape[-2], x.shape[-1])

        out_conv = self.dep_conv(f_conv)

        return self.rate1 * out_att + self.rate2 * out_conv

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = ACmix(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_ACmix(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

四、创新模块

4.1 改进点⭐

模块改进方法 :直接加入 ACmix 第五节讲解添加步骤 )。

ACmix 模块加入如下:

在这里插入图片描述

4.2 改进点⭐

模块改进方法 :基于 ACmix模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进,并将 ACmix 在加入到 ResNetLayer 模块中。

改进代码如下:

ResNetBlock 模块进行改进,加入 ACmix模块 ,将 ResNetLayer 重命名为 ResNetLayer_ACmix

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = ACmix(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_ACmix(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)
 

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: ACmix ResNetLayer_ACmix


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 ACmix.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .ACmix import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 ACmix ResNetLayer_ACmix 模块

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

最后,在 ultralytics/cfg/default.yaml 路径中找到 amp ,并将其设置为 False

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-ACmix.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-ACmix.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中添加 ACmix模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, ACmix, [2048]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 yolov10m-ResNetLayer_ACmix.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_ACmix.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 ResNetLayer模块 替换成 ResNetLayer_ACmix模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_ACmix, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_ACmix, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_ACmix, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_ACmix, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_ACmix, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 ACmix ResNetLayer_ACmix 已经加入到模型中,并可以进行训练了。

rtdetr-l-ACmix

rtdetr-l-ACmix summary: 686 layers, 45,237,523 parameters, 45,237,523 gradients, 118.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6  19400016  ultralytics.nn.AddModules.ACmix.ACmix        [1024, 1024]                  
 10                  -1  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-ACmix summary: 686 layers, 45,237,523 parameters, 45,237,523 gradients, 118.0 GFLOPs

rtdetr-ResNetLayer_ACmix

rtdetr-ResNetLayer_ACmix summary: 689 layers, 54,084,643 parameters, 54,084,643 gradients, 166.8 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.ACmix.ResNetLayer_ACmix[3, 64, 1, True, 1]           
  1                  -1  1    378408  ultralytics.nn.AddModules.ACmix.ResNetLayer_ACmix[64, 64, 1, False, 3]         
  2                  -1  1   1915104  ultralytics.nn.AddModules.ACmix.ResNetLayer_ACmix[256, 128, 2, False, 4]       
  3                  -1  1  10757456  ultralytics.nn.AddModules.ACmix.ResNetLayer_ACmix[512, 256, 2, False, 6]       
  4                  -1  1  21769384  ultralytics.nn.AddModules.ACmix.ResNetLayer_ACmix[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_ACmix summary: 689 layers, 54,084,643 parameters, 54,084,643 gradients, 166.8 GFLOPs