RT-DETR改进策略【注意力机制篇】| 2024 蒙特卡罗注意力(MCAttn)模块,提高小目标的关注度
一、本文介绍
本文记录的是
基于蒙特卡罗注意力(MCAttn)模块的RT-DETR目标检测改进方法研究
。利用
蒙特卡罗注意力(MCAttn)模块
提高
RepNCSPELAN4模块
的跨尺度特征提取能力,
使模型能够更好地传递和融合提取的多尺度特征,提高对小目标的关注度。
二、MCAttn模块介绍
Exploiting Scale-Variant Attention for Segmenting Small Medical Objects
2.1 设计出发点
- 解决传统注意力机制的局限性 :传统的深度学习注意力机制在处理医学图像时存在一些局限性。例如,一些方法如squeeze - excitation(SE)采用全局 - 平均池化来获取 1 × 1 1×1 1 × 1 输出张量,这种方式虽然有助于校准通道间的相互依赖关系,但在利用跨尺度相关性方面能力有限。对于医学图像中的小对象分割,需要一种能够更好地捕捉不同尺度信息的注意力机制。
- 适应医学图像小对象分割需求 :医学图像中的小对象具有独特的挑战,它们不仅尺寸小,而且形态和位置信息难以准确把握。传统的注意力机制产生的固定维度注意力图往往不足以分析医学图像,因为它们可能忽略了背景中的丰富上下文信息以及小对象自身的多尺度特征。因此,需要设计一种专门针对医学小对象分割的注意力模块,能够更好地适应小对象的特点,提高分割的准确性。
2.2 MCAttn原理
2.2.1 基于随机采样的池化操作
MCAttn模块
使用一种基于
随机采样
的池化操作来生成尺度无关的注意力图。它从三个不同尺度(
3
×
3
3×3
3
×
3
、
2
×
2
2×2
2
×
2
和
1
×
1
1×1
1
×
1
,即池化张量)中随机选择一个
1
×
1
1×1
1
×
1
注意力图。
2.2.2 注意力图的计算
给定一个输入张量
x
x
x
,
MCAttn
的输出注意力图
A
m
(
x
)
A_{m}(x)
A
m
(
x
)
计算方式如下:
A m ( x ) = ∑ i = 1 n P 1 ( x , i ) f ( x , i ) A_{m}(x)=\sum_{i = 1}^{n}P_{1}(x,i)f(x,i) A m ( x ) = ∑ i = 1 n P 1 ( x , i ) f ( x , i ) ,
其中 i i i 表示注意力图的输出大小, f ( x , i ) f(x,i) f ( x , i ) 表示平均池化函数, n n n 表示输出池化张量的数量(在本研究中设置为 3 3 3 )。这里的关联概率 P 1 ( x , i ) P_{1}(x,i) P 1 ( x , i ) 满足条件 ∑ i = 1 n P 1 ( x , i ) = 1 \sum_{i = 1}^{n}P_{1}(x,i)=1 ∑ i = 1 n P 1 ( x , i ) = 1 且 ∏ i = 1 n P 1 ( x , i ) = 0 \prod_{i = 1}^{n}P_{1}(x,i)=0 ∏ i = 1 n P 1 ( x , i ) = 0 ,确保生成通用且可推广的注意力图。
2.3 特点
-
跨尺度信息捕捉
:通过从三个不同尺度中随机选择注意力图,
MCAttn模块能够捕捉到不同尺度的信息,增强了网络对小医学对象的识别能力。这种跨尺度的特性使得它能够更好地适应医学图像中不同大小和形态的小对象,弥补了传统注意力机制在这方面的不足。 -
提高对小对象的关注度
:在实验中,与不使用
MCAttn模块的情况相比,使用MCAttn在MCBottleneck中能够增强对超小和小医学对象的形态和精确位置的辨别能力。 -
增强特征学习
:
MCAttn模块生成的注意力图能够更好地引导网络学习小对象的特征,提高了上下文特征学习的能力。它可以帮助网络更好地理解小对象与周围环境的关系,以及小对象自身在不同尺度下的特征变化,从而提高整个网络的分割性能。
论文: https://arxiv.org/abs/2407.07720
源码: https://github.com/anthonyweidai/SvANet
三、MCAttn的实现代码
MCAttn模块
的实现代码如下:
import math
import numpy as np
from typing import Any, Callable
from typing import Union, Optional
import torch
from torch import nn, Tensor
from ultralytics.nn.modules.conv import LightConv
def pair(Val):
return Val if isinstance(Val, (tuple, list)) else (Val, Val)
NormLayerTuple = (
nn.BatchNorm1d,
nn.BatchNorm2d,
nn.SyncBatchNorm,
nn.LayerNorm,
nn.InstanceNorm1d,
nn.InstanceNorm2d,
nn.GroupNorm,
nn.BatchNorm3d,
)
def initWeight(Module):
# init conv, norm , and linear layers
## empty module
if Module is None:
return
## conv layer
elif isinstance(Module, (nn.Conv2d, nn.Conv3d, nn.ConvTranspose2d)):
nn.init.kaiming_uniform_(Module.weight, a=math.sqrt(5))
if Module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(Module.weight)
if fan_in != 0:
bound = 1 / math.sqrt(fan_in)
nn.init.uniform_(Module.bias, -bound, bound)
## norm layer
elif isinstance(Module, NormLayerTuple):
if Module.weight is not None:
nn.init.ones_(Module.weight)
if Module.bias is not None:
nn.init.zeros_(Module.bias)
## linear layer
elif isinstance(Module, nn.Linear):
nn.init.kaiming_uniform_(Module.weight, a=math.sqrt(5))
if Module.bias is not None:
fan_in, _ = nn.init._calculate_fan_in_and_fan_out(Module.weight)
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
nn.init.uniform_(Module.bias, -bound, bound)
elif isinstance(Module, (nn.Sequential, nn.ModuleList)):
for m in Module:
initWeight(m)
elif list(Module.children()):
for m in Module.children():
initWeight(m)
class BaseConv2d(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: Optional[int]=1,
padding: Optional[int]=None,
groups: Optional[int]=1,
bias: Optional[bool]=None,
BNorm: bool=False,
# norm_layer: Optional[Callable[..., nn.Module]]=nn.BatchNorm2d,
ActLayer: Optional[Callable[..., nn.Module]]=None,
dilation: int=1,
Momentum: Optional[float]=0.1,
**kwargs: Any
) -> None:
super(BaseConv2d, self).__init__()
if padding is None:
padding = int((kernel_size - 1) // 2 * dilation)
if bias is None:
bias = not BNorm
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.groups = groups
self.bias = bias
self.Conv = nn.Conv2d(in_channels, out_channels,
kernel_size, stride, padding, dilation, groups, bias, **kwargs)
self.Bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=Momentum) if BNorm else nn.Identity()
if ActLayer is not None:
if isinstance(list(ActLayer().named_modules())[0][1], nn.Sigmoid):
self.Act = ActLayer()
else:
self.Act = ActLayer(inplace=True)
else:
self.Act = ActLayer
self.apply(initWeight)
def forward(self, x: Tensor) -> Tensor:
x = self.Conv(x)
x = self.Bn(x)
if self.Act is not None:
x = self.Act(x)
return x
def profileModule(self, Input: Tensor):
if Input.dim() != 4:
print('Conv2d requires 4-dimensional Input (BxCxHxW). Provided Input has shape: {}'.format(Input.size()))
BatchSize, in_channels, in_h, in_w = Input.size()
assert in_channels == self.in_channels, '{}!={}'.format(in_channels, self.in_channels)
k_h, k_w = pair(self.kernel_size)
stride_h, stride_w = pair(self.stride)
pad_h, pad_w = pair(self.padding)
groups = self.groups
out_h = (in_h - k_h + 2 * pad_h) // stride_h + 1
out_w = (in_w - k_w + 2 * pad_w) // stride_w + 1
# compute MACs
MACs = (k_h * k_w) * (in_channels * self.out_channels) * (out_h * out_w) * 1.0
MACs /= groups
if self.bias:
MACs += self.out_channels * out_h * out_w
# compute parameters
Params = sum([p.numel() for p in self.parameters()])
Output = torch.zeros(size=(BatchSize, self.out_channels, out_h, out_w), dtype=Input.dtype, device=Input.device)
# print(MACs)
return Output, Params, MACs
class AdaptiveAvgPool2d(nn.AdaptiveAvgPool2d):
def __init__(self, output_size: Union[int, tuple]=1):
super(AdaptiveAvgPool2d, self).__init__(output_size=output_size)
def profileModule(self, Input: Tensor):
Output = self.forward(Input)
return Output, 0.0, 0.0
def setMethod(self, ElementName, ElementValue):
return setattr(self, ElementName, ElementValue)
def shuffleTensor(Feature: Tensor, Mode: int=1) -> Tensor:
# shuffle multiple tensors with the same indexs
# all tensors must have the same shape
if isinstance(Feature, Tensor):
Feature = [Feature]
Indexs = None
Output = []
for f in Feature:
# not in-place operation, should update output
B, C, H, W = f.shape
if Mode == 1:
# fully shuffle
f = f.flatten(2)
if Indexs is None:
Indexs = torch.randperm(f.shape[-1], device=f.device)
f = f[:, :, Indexs.to(f.device)]
f = f.reshape(B, C, H, W)
else:
# shuflle along y and then x axis
if Indexs is None:
Indexs = [torch.randperm(H, device=f.device),
torch.randperm(W, device=f.device)]
f = f[:, :, Indexs[0].to(f.device)]
f = f[:, :, :, Indexs[1].to(f.device)]
Output.append(f)
return Output
def callMethod(self, ElementName):
return getattr(self, ElementName)
def makeDivisible(v: float, divisor: int, min_value: Optional[int] = None) -> int:
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.Py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
class MoCAttention(nn.Module):
# Monte carlo attention
def __init__(
self,
InChannels: int,
HidChannels: int=None,
SqueezeFactor: int=4,
PoolRes: list=[1, 2, 3],
Act: Callable[..., nn.Module]=nn.ReLU,
ScaleAct: Callable[..., nn.Module]=nn.Sigmoid,
MoCOrder: bool=True,
**kwargs: Any,
) -> None:
super().__init__()
if HidChannels is None:
HidChannels = max(makeDivisible(InChannels // SqueezeFactor, 8), 32)
AllPoolRes = PoolRes + [1] if 1 not in PoolRes else PoolRes
for k in AllPoolRes:
Pooling = AdaptiveAvgPool2d(k)
setMethod(self, 'Pool%d' % k, Pooling)
self.SELayer = nn.Sequential(
BaseConv2d(InChannels, HidChannels, 1, ActLayer=Act),
BaseConv2d(HidChannels, InChannels, 1, ActLayer=ScaleAct),
)
self.PoolRes = PoolRes
self.MoCOrder = MoCOrder
def monteCarloSample(self, x: Tensor) -> Tensor:
if self.training:
PoolKeep = np.random.choice(self.PoolRes)
x1 = shuffleTensor(x)[0] if self.MoCOrder else x
AttnMap: Tensor = callMethod(self, 'Pool%d' % PoolKeep)(x1)
if AttnMap.shape[-1] > 1:
AttnMap = AttnMap.flatten(2)
AttnMap = AttnMap[:, :, torch.randperm(AttnMap.shape[-1])[0]]
AttnMap = AttnMap[:, :, None, None] # squeeze twice
else:
AttnMap: Tensor = callMethod(self, 'Pool%d' % 1)(x)
return AttnMap
def forward(self, x: Tensor) -> Tensor:
AttnMap = self.monteCarloSample(x)
return x * self.SELayer(AttnMap)
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class HGBlock_MoCAttention(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = MoCAttention(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
四、添加步骤
4.1 改进点1
模块改进方法
1️⃣:直接加入
MoCAttention模块
。
MoCAttention模块
添加后如下:
注意❗:在
5.2和5.3小节
中需要声明的模块名称为:
MoCAttention
。
4.2 改进点2⭐
模块改进方法
2️⃣:基于
MoCAttention模块
的
HGBlock
。
相较方法一中的直接插入注意力模块,利用注意力模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。
第二种改进方法是对
RT-DETR
中的
HGBlock模块
进行改进,
MoCAttention
的跨尺度特征提取能力可以进一步丰富
HGBlock模块
所处理的特征信息。
HGBlock模块
则可以将提取到的特征送入
MoCAttention
中,
使网络能够更全面地理解图像中的目标对象,提高整体的特征提取能力。
改进代码如下:
class HGBlock_MoCAttention(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = MoCAttention(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
注意❗:需要声明的模块名称为:
HGBlock_MoCAttention
。
五、添加步骤
5.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
MoCAttention.py
,将
第三节
中的代码粘贴到此处
5.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .MoCAttention import *
5.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
MoCAttention
和
HGBlock_SimAM
模块
六、yaml模型文件
6.1 模型改进版本一
在代码配置完成后,配置模型的YAML文件。
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-MoCAttention.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-MoCAttention.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
在骨干网络中添加
MoCAttention模块
,
只需要填入一个参数,通道数
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 1, MoCAttention, [1024]] # stage 4
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 18], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 13], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[22, 25, 28], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
6.2 模型改进版本二⭐
此处同样以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-HGBlock_MoCAttention.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-HGBlock_MoCAttention.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
中的部分
HGBlock模块
替换成
HGBlock_MoCAttention模块
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock_MoCAttention, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock_MoCAttention, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock_MoCAttention, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
七、成功运行结果
分别打印网络模型可以看到
MoCAttention模块
和
HGBlock_MoCAttention
已经加入到模型中,并可以进行训练了。
rtdetr-l-MoCAttention :
rtdetr-l-MoCAttention summary: 694 layers, 34,907,331 parameters, 34,907,331 gradients, 108.0 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 1695360 ultralytics.nn.modules.block.HGBlock [512, 192, 1024, 5, 6, True, False]
6 -1 6 2055808 ultralytics.nn.modules.block.HGBlock [1024, 192, 1024, 5, 6, True, True]
7 -1 6 2055808 ultralytics.nn.modules.block.HGBlock [1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 1 2099200 ultralytics.nn.AddModules.MoCAttention.MoCAttention[1024, 1024]
10 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
11 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
12 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
13 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
16 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
17 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
18 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
19 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
20 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
21 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
23 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
24 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
26 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
27 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
29 [22, 25, 28] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-MoCAttention summary: 694 layers, 34,907,331 parameters, 34,907,331 gradients, 108.0 GFLOPs
rtdetr-l-HGBlock_MoCAttention :
rtdetr-l-HGBlock_MoCAttention summary: 721 layers, 34,384,835 parameters, 34,384,835 gradients, 108.0 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 2220928 ultralytics.nn.AddModules.MoCAttention.HGBlock_MoCAttention[512, 192, 1024, 5, 6, True, False]
6 -1 6 2581376 ultralytics.nn.AddModules.MoCAttention.HGBlock_MoCAttention[1024, 192, 1024, 5, 6, True, True]
7 -1 6 2581376 ultralytics.nn.AddModules.MoCAttention.HGBlock_MoCAttention[1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
10 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
11 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
22 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
23 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
25 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
26 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
28 [21, 24, 27] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-HGBlock_MoCAttention summary: 721 layers, 34,384,835 parameters, 34,384,835 gradients, 108.0 GFLOPs