学习资源站

RT-DETR改进策略【模型轻量化】替换骨干网络CVPR-2023FasterNet高效快速的部分卷积块_rtdetr轻量化改进-

RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2023 FasterNet 高效快速的部分卷积块

一、本文介绍

本文记录的是 基于FasterNet的RT-DETR轻量化改进方法研究 FasterNet 的网络结构借鉴 CNN 的设计理念,通过提出的 PConv 减少推理时的计算和内存成本,同时减少通道数并增加部分比例,降低延迟 ,并通过后续的 PWConv 弥补特征信息可能缺失的问题 ,提高了准确性。本文在替换骨干网络中配置了原论文中的 fasternet_t0 fasternet_t1 fasternet_t2 fasternet_s fasternet_m fasternet_l 六种模型,以满足不同的需求。

模型 参数量 计算量 推理速度
rtdetr-l 32.8M 108.0GFLOPs 11.6ms
Improved 20.7M 66.1GFLOPs 10.3ms


二、FasterNet结构详解

2.1 出发点

在计算机视觉任务中,追求快速神经网络是一个趋势。然而,现有的一些神经网络在降低FLOPs(浮点运算次数)时,往往忽略了FLOPS(每秒浮点运算次数)的优化,导致实际运行速度不够快。FasterNet的设计出发点是为了克服这一问题,实现既减少FLOPs又提高FLOPS,从而在各种设备上达到快速运行的效果,同时不影响准确性。

2.2 原理

2.2.1 PConv(部分卷积)的原理

  • 减少计算冗余和内存访问 :观察到现有算子(如DWConv)因频繁内存访问导致FLOPS低,提出 PConv 。它利用特征图在不同通道间的冗余,仅对部分输入通道应用常规卷积进行空间特征提取,其余通道保持不变。

例如,对于输入输出通道数相同且采用典型部分比例 r = 1 4 r=\frac{1}{4} r = 4 1 的情况, PConv 的FLOPs仅为常规卷积的 1 16 \frac{1}{16} 16 1 ,内存访问量也仅为常规卷积的 1 4 \frac{1}{4} 4 1

  • 与PWConv结合 PConv 后接 PWConv(逐点卷积) ,其有效感受野类似T形卷积, 更关注中心位置 。这种组合方式比直接使用T形卷积更能利用滤波器间的冗余,进一步节省FLOPs。

2.2.2 FasterNet的构建原理

PConv PWConv 为主要构建算子,构建 FasterNet 。它保持架构简单,具有硬件友好性。其整体架构包含四个层次阶段,每个阶段前有嵌入层或合并层用于空间下采样和通道数扩展,每个阶段包含多个 FasterNet块 ,每个块由 一个PConv层和两个PWConv层 组成,类似倒置残差块结构,中间层通道数扩展且有 shortcut连接以复用输入特征。同时,仅在每个中间 PWConv层 后放置 归一化和激活层 ,以保留特征多样性并降低延迟。

2.3 结构

2.3.1 整体架构

  • 四个阶段 :具有四个层次阶段,各阶段通过嵌入层(如 4 × 4 4×4 4 × 4 卷积,步长为4)或合并层(如 2 × 2 2×2 2 × 2 卷积,步长为2)进行空间下采样和通道数扩展。
  • FasterNet块 :每个阶段包含多个 FasterNet块 ,每个块由 PConv层 两个PWConv层 组成。

在这里插入图片描述

2.3.2 各层细节

  • PConv层 :按照 部分比例 对输入通道进行卷积操作,例如 r = 1 4 r=\frac{1}{4} r = 4 1 时仅对 1 4 \frac{1}{4} 4 1 的输入通道进行卷积。
  • PWConv层 :在 PConv层 之后,用于进一步处理特征。

在这里插入图片描述

  • 归一化和激活层 :采用 批量归一化(BN) ,激活层对于较小的FasterNet变体选择GELU,较大变体选择ReLU,且仅在中间PWConv层后放置,以减少对特征多样性的影响并降低延迟。

2.4 优势

  • 速度快
    • PConv的高FLOPS :在GPU、CPU和ARM处理器上,PConv相比DWConv分别实现了 10.5 X 10.5X 10.5 X 6.2 X 6.2X 6.2 X 22.8 X 22.8X 22.8 X 更高的FLOPS,同时FLOPs显著降低。例如,10层纯PConv的堆叠在不同处理器上展现出良好的计算速度。
    • FasterNet的高效运行 :在多种设备上,如GPU、CPU和ARM处理器,FasterNet相比其他神经网络(如MobileViT、ResNet等)在保持相似或更高准确性的情况下,运行速度更快。

例如,在ImageNet - 1k上,FasterNet - T0在GPU、CPU和ARM处理器上分别比MobileViT - XXS快 2.8 × 2.8× 2.8 × 3.3 X 3.3X 3.3 X 2.4 X 2.4X 2.4 X ,同时精度更高;FasterNet - L达到83.5%的top - 1准确率,与Swin - B相当,在GPU上推理吞吐量提高36%,在CPU上节省37%的计算时间。

  • 准确性高 :在分类、检测和分割等视觉任务上取得了先进的性能。在ImageNet - 1k分类任务中,不同变体的FasterNet都取得了较好的准确率,且在下游的COCO数据集上进行目标检测和实例分割任务时,相比ResNet和ResNext等模型,具有更高的平均精度(AP)。
  • 结构简单 :架构设计相比许多其他模型更简单,展示了设计简单而强大神经网络的可行性。这种简单性有助于硬件实现和模型的理解与应用。

论文: https://arxiv.org/pdf/2303.03667
源码: https://github.com/JierunChen/FasterNet

三、FasterNet实现代码

FasterNet 的实现代码如下:

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch, yaml
import torch.nn as nn
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from functools import partial
from typing import List
from torch import Tensor
import copy
import os
import numpy as np

__all__ = ['fasternet_t0', 'fasternet_t1', 'fasternet_t2', 'fasternet_s', 'fasternet_m', 'fasternet_l']

class Partial_conv3(nn.Module):

    def __init__(self, dim, n_div, forward):
        super().__init__()
        self.dim_conv3 = dim // n_div
        self.dim_untouched = dim - self.dim_conv3
        self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)

        if forward == 'slicing':
            self.forward = self.forward_slicing
        elif forward == 'split_cat':
            self.forward = self.forward_split_cat
        else:
            raise NotImplementedError

    def forward_slicing(self, x: Tensor) -> Tensor:
        # only for inference
        x = x.clone()   # !!! Keep the original input intact for the residual connection later
        x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])

        return x

    def forward_split_cat(self, x: Tensor) -> Tensor:
        # for training/inference
        x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
        x1 = self.partial_conv3(x1)
        x = torch.cat((x1, x2), 1)

        return x

class MLPBlock(nn.Module):

    def __init__(self,
                 dim,
                 n_div,
                 mlp_ratio,
                 drop_path,
                 layer_scale_init_value,
                 act_layer,
                 norm_layer,
                 pconv_fw_type
                 ):

        super().__init__()
        self.dim = dim
        self.mlp_ratio = mlp_ratio
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.n_div = n_div

        mlp_hidden_dim = int(dim * mlp_ratio)

        mlp_layer: List[nn.Module] = [
            nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
            norm_layer(mlp_hidden_dim),
            act_layer(),
            nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
        ]

        self.mlp = nn.Sequential(*mlp_layer)

        self.spatial_mixing = Partial_conv3(
            dim,
            n_div,
            pconv_fw_type
        )

        if layer_scale_init_value > 0:
            self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.forward = self.forward_layer_scale
        else:
            self.forward = self.forward

    def forward(self, x: Tensor) -> Tensor:
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(self.mlp(x))
        return x

    def forward_layer_scale(self, x: Tensor) -> Tensor:
        shortcut = x
        x = self.spatial_mixing(x)
        x = shortcut + self.drop_path(
            self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
        return x

class BasicStage(nn.Module):

    def __init__(self,
                 dim,
                 depth,
                 n_div,
                 mlp_ratio,
                 drop_path,
                 layer_scale_init_value,
                 norm_layer,
                 act_layer,
                 pconv_fw_type
                 ):

        super().__init__()

        blocks_list = [
            MLPBlock(
                dim=dim,
                n_div=n_div,
                mlp_ratio=mlp_ratio,
                drop_path=drop_path[i],
                layer_scale_init_value=layer_scale_init_value,
                norm_layer=norm_layer,
                act_layer=act_layer,
                pconv_fw_type=pconv_fw_type
            )
            for i in range(depth)
        ]

        self.blocks = nn.Sequential(*blocks_list)

    def forward(self, x: Tensor) -> Tensor:
        x = self.blocks(x)
        return x

class PatchEmbed(nn.Module):

    def __init__(self, patch_size, patch_stride, in_chans, embed_dim, norm_layer):
        super().__init__()
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(embed_dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        x = self.norm(self.proj(x))
        return x

class PatchMerging(nn.Module):

    def __init__(self, patch_size2, patch_stride2, dim, norm_layer):
        super().__init__()
        self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=patch_size2, stride=patch_stride2, bias=False)
        if norm_layer is not None:
            self.norm = norm_layer(2 * dim)
        else:
            self.norm = nn.Identity()

    def forward(self, x: Tensor) -> Tensor:
        x = self.norm(self.reduction(x))
        return x

class FasterNet(nn.Module):
    def __init__(self,
                 in_chans=3,
                 num_classes=1000,
                 embed_dim=96,
                 depths=(1, 2, 8, 2),
                 mlp_ratio=2.,
                 n_div=4,
                 patch_size=4,
                 patch_stride=4,
                 patch_size2=2,  # for subsequent layers
                 patch_stride2=2,
                 patch_norm=True,
                 feature_dim=1280,
                 drop_path_rate=0.1,
                 layer_scale_init_value=0,
                 norm_layer='BN',
                 act_layer='RELU',
                 init_cfg=None,
                 pretrained=None,
                 pconv_fw_type='split_cat',
                 **kwargs):
        super().__init__()

        if norm_layer == 'BN':
            norm_layer = nn.BatchNorm2d
        else:
            raise NotImplementedError

        if act_layer == 'GELU':
            act_layer = nn.GELU
        elif act_layer == 'RELU':
            act_layer = partial(nn.ReLU, inplace=True)
        else:
            raise NotImplementedError

        self.num_stages = len(depths)
        self.embed_dim = embed_dim
        self.patch_norm = patch_norm
        self.num_features = int(embed_dim * 2 ** (self.num_stages - 1))
        self.mlp_ratio = mlp_ratio
        self.depths = depths

        # split image into non-overlapping patches
        self.patch_embed = PatchEmbed(
            patch_size=patch_size,
            patch_stride=patch_stride,
            in_chans=in_chans,
            embed_dim=embed_dim,
            norm_layer=norm_layer if self.patch_norm else None
        )

        # stochastic depth decay rule
        dpr = [x.item()
               for x in torch.linspace(0, drop_path_rate, sum(depths))]

        # build layers
        stages_list = []
        for i_stage in range(self.num_stages):
            stage = BasicStage(dim=int(embed_dim * 2 ** i_stage),
                               n_div=n_div,
                               depth=depths[i_stage],
                               mlp_ratio=self.mlp_ratio,
                               drop_path=dpr[sum(depths[:i_stage]):sum(depths[:i_stage + 1])],
                               layer_scale_init_value=layer_scale_init_value,
                               norm_layer=norm_layer,
                               act_layer=act_layer,
                               pconv_fw_type=pconv_fw_type
                               )
            stages_list.append(stage)

            # patch merging layer
            if i_stage < self.num_stages - 1:
                stages_list.append(
                    PatchMerging(patch_size2=patch_size2,
                                 patch_stride2=patch_stride2,
                                 dim=int(embed_dim * 2 ** i_stage),
                                 norm_layer=norm_layer)
                )

        self.stages = nn.Sequential(*stages_list)

        # add a norm layer for each output
        self.out_indices = [0, 2, 4, 6]
        for i_emb, i_layer in enumerate(self.out_indices):
            if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                raise NotImplementedError
            else:
                layer = norm_layer(int(embed_dim * 2 ** i_emb))
            layer_name = f'norm{i_layer}'
            self.add_module(layer_name, layer)
        
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
    def forward(self, x: Tensor) -> Tensor:
        # output the features of four stages for dense prediction
        x = self.patch_embed(x)
        outs = []
        for idx, stage in enumerate(self.stages):
            x = stage(x)
            if idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                x_out = norm_layer(x)
                outs.append(x_out)
        return outs

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

def fasternet_t0(weights=None, cfg='ultralytics/nn/AddModules/faster_cfg/fasternet_t0.yaml'):
    with open(cfg) as f:
        cfg = yaml.load(f, Loader=yaml.SafeLoader)
    model = FasterNet(**cfg)
    if weights is not None:
        pretrain_weight = torch.load(weights, map_location='cpu')
        model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))
    return model

def fasternet_t1(weights=None, cfg='ultralytics/nn/AddModules/faster_cfg/fasternet_t1.yaml'):
    with open(cfg) as f:
        cfg = yaml.load(f, Loader=yaml.SafeLoader)
    model = FasterNet(**cfg)
    if weights is not None:
        pretrain_weight = torch.load(weights, map_location='cpu')
        model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))
    return model

def fasternet_t2(weights=None, cfg='ultralytics/nn/AddModules/faster_cfg/fasternet_t2.yaml'):
    with open(cfg) as f:
        cfg = yaml.load(f, Loader=yaml.SafeLoader)
    model = FasterNet(**cfg)
    if weights is not None:
        pretrain_weight = torch.load(weights, map_location='cpu')
        model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))
    return model

def fasternet_s(weights=None, cfg='ultralytics/nn/AddModules/faster_cfg/fasternet_s.yaml'):
    with open(cfg) as f:
        cfg = yaml.load(f, Loader=yaml.SafeLoader)
    model = FasterNet(**cfg)
    if weights is not None:
        pretrain_weight = torch.load(weights, map_location='cpu')
        model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))
    return model

def fasternet_m(weights=None, cfg='ultralytics/nn/AddModules/faster_cfg/fasternet_m.yaml'):
    with open(cfg) as f:
        cfg = yaml.load(f, Loader=yaml.SafeLoader)
    model = FasterNet(**cfg)
    if weights is not None:
        pretrain_weight = torch.load(weights, map_location='cpu')
        model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))
    return model

def fasternet_l(weights=None, cfg='ultralytics/nn/AddModules/faster_cfg/fasternet_l.yaml'):
    with open(cfg) as f:
        cfg = yaml.load(f, Loader=yaml.SafeLoader)
    model = FasterNet(**cfg)
    if weights is not None:
        pretrain_weight = torch.load(weights, map_location='cpu')
        model.load_state_dict(update_weight(model.state_dict(), pretrain_weight))
    return model

if __name__ == '__main__':
    import yaml
    model = fasternet_t0(weights='fasternet_t0-epoch.281-val_acc1.71.9180.pth', cfg='cfg/fasternet_t0.yaml')
    print(model.channel)
    inputs = torch.randn((1, 3, 640, 640))
    for i in model(inputs):
        print(i.size())

四、修改步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 FasterNet.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .FasterNet import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要添加各模块类。

① 首先:导入模块

在这里插入图片描述

② 在BaseModel类的predict函数中,在如下两处位置中去掉 embed 参数:

在这里插入图片描述

③ 在BaseModel类的_predict_once函数,替换如下代码:

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

在这里插入图片描述

④ 将 RTDETRDetectionModel类 中的 predict函数 完整替换:

    def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt = [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # for i in x:
                #     if i is not None:
                #         print(i.size())
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

在这里插入图片描述

⑤ 在 parse_model函数 如下位置替换如下代码:

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a

替换后如下:

在这里插入图片描述

⑥ 在 parse_model 函数,添加如下代码。

elif m in {fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,}:
    m = m(*args)
    c2 = m.channel

在这里插入图片描述

⑦ 在 parse_model函数 如下位置替换如下代码:

    	if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        
        m_.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m_.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

在这里插入图片描述

⑧ 在 ultralytics\nn\autobackend.py 文件的 AutoBackend类 中的 forward函数 ,完整替换如下代码:

    def forward(self, im, augment=False, visualize=False):
        """
        Runs inference on the YOLOv8 MultiBackend model.

        Args:
            im (torch.Tensor): The image tensor to perform inference on.
            augment (bool): whether to perform data augmentation during inference, defaults to False
            visualize (bool): whether to visualize the output predictions, defaults to False

        Returns:
            (tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
        """
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.fp16 and im.dtype != torch.float16:
            im = im.half()  # to FP16
        if self.nhwc:
            im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)

        if self.pt or self.nn_module:  # PyTorch
            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
        elif self.jit:  # TorchScript
            y = self.model(im)
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            y = list(self.ov_compiled_model(im).values())
        elif self.engine:  # TensorRT
            if self.dynamic and im.shape != self.bindings['images'].shape:
                i = self.model.get_binding_index('images')
                self.context.set_binding_shape(i, im.shape)  # reshape if dynamic
                self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
                for name in self.output_names:
                    i = self.model.get_binding_index(name)
                    self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
            s = self.bindings['images'].shape
            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = [self.bindings[x].data for x in sorted(self.output_names)]
        elif self.coreml:  # CoreML
            im = im[0].cpu().numpy()
            im_pil = Image.fromarray((im * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.BILINEAR)
            y = self.model.predict({'image': im_pil})  # coordinates are xywh normalized
            if 'confidence' in y:
                raise TypeError('Ultralytics only supports inference of non-pipelined CoreML models exported with '
                                f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export.")
                # TODO: CoreML NMS inference handling
                # from ultralytics.utils.ops import xywh2xyxy
                # box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                # conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
                # y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            elif len(y) == 1:  # classification model
                y = list(y.values())
            elif len(y) == 2:  # segmentation model
                y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)
        elif self.paddle:  # PaddlePaddle
            im = im.cpu().numpy().astype(np.float32)
            self.input_handle.copy_from_cpu(im)
            self.predictor.run()
            y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
        elif self.ncnn:  # ncnn
            mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
            ex = self.net.create_extractor()
            input_names, output_names = self.net.input_names(), self.net.output_names()
            ex.input(input_names[0], mat_in)
            y = []
            for output_name in output_names:
                mat_out = self.pyncnn.Mat()
                ex.extract(output_name, mat_out)
                y.append(np.array(mat_out)[None])
        elif self.triton:  # NVIDIA Triton Inference Server
            im = im.cpu().numpy()  # torch to numpy
            y = self.model(im)
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.cpu().numpy()
            if self.saved_model:  # SavedModel
                y = self.model(im, training=False) if self.keras else self.model(im)
                if not isinstance(y, list):
                    y = [y]
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im))
                if len(y) == 2 and len(self.names) == 999:  # segments and names not defined
                    ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0)  # index of protos, boxes
                    nc = y[ib].shape[1] - y[ip].shape[3] - 4  # y = (1, 160, 160, 32), (1, 116, 8400)
                    self.names = {i: f'class{i}' for i in range(nc)}
            else:  # Lite or Edge TPU
                details = self.input_details[0]
                integer = details['dtype'] in (np.int8, np.int16)  # is TFLite quantized int8 or int16 model
                if integer:
                    scale, zero_point = details['quantization']
                    im = (im / scale + zero_point).astype(details['dtype'])  # de-scale
                self.interpreter.set_tensor(details['index'], im)
                self.interpreter.invoke()
                y = []
                for output in self.output_details:
                    x = self.interpreter.get_tensor(output['index'])
                    if integer:
                        scale, zero_point = output['quantization']
                        x = (x.astype(np.float32) - zero_point) * scale  # re-scale
                    if x.ndim > 2:  # if task is not classification
                        # Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
                        # xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
                        x[:, [0, 2]] *= w
                        x[:, [1, 3]] *= h
                    y.append(x)
            # TF segment fixes: export is reversed vs ONNX export and protos are transposed
            if len(y) == 2:  # segment with (det, proto) output order reversed
                if len(y[1].shape) != 4:
                    y = list(reversed(y))  # should be y = (1, 116, 8400), (1, 160, 160, 32)
                y[1] = np.transpose(y[1], (0, 3, 1, 2))  # should be y = (1, 116, 8400), (1, 32, 160, 160)
            y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]

        # for x in y:
        #     print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape)  # debug shapes
        if isinstance(y, (list, tuple)):
            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
        else:
            return self.from_numpy(y)

在这里插入图片描述

4.4 修改四

ultralytics/nn/AddModules/ 目录下新建 faster_cfg

在此文件下新建 6个YAML 文件

在这里插入图片描述
fasternet_l.yaml 文件中粘贴以下内容:

mlp_ratio: 2
embed_dim: 192
depths: [3, 4, 18, 3]
feature_dim: 1280
patch_size: 4
patch_stride: 4
patch_size2: 2
patch_stride2: 2
layer_scale_init_value: 0 # no layer scale
drop_path_rate: 0.3
norm_layer:  BN
act_layer: RELU
n_div: 4

fasternet_m.yaml 文件中粘贴以下内容:

mlp_ratio: 2
embed_dim: 144
depths: [3, 4, 18, 3]
feature_dim: 1280
patch_size: 4
patch_stride: 4
patch_size2: 2
patch_stride2: 2
layer_scale_init_value: 0 # no layer scale
drop_path_rate: 0.2
norm_layer:  BN
act_layer: RELU
n_div: 4

fasternet_s.yaml 文件中粘贴以下内容:

mlp_ratio: 2
embed_dim: 128
depths: [1, 2, 13, 2]
feature_dim: 1280
patch_size: 4
patch_stride: 4
patch_size2: 2
patch_stride2: 2
layer_scale_init_value: 0 # no layer scale
drop_path_rate: 0.1
norm_layer:  BN
act_layer: RELU
n_div: 4

fasternet_t0.yaml 文件中粘贴以下内容:

mlp_ratio: 2
embed_dim: 40
depths: [1, 2, 8, 2]
feature_dim: 1280
patch_size: 4
patch_stride: 4
patch_size2: 2
patch_stride2: 2
layer_scale_init_value: 0 # no layer scale
drop_path_rate: 0.
norm_layer:  BN
act_layer: GELU
n_div: 4

fasternet_t1.yaml 文件中粘贴以下内容:

mlp_ratio: 2
embed_dim: 64
depths: [1, 2, 8, 2]
feature_dim: 1280
patch_size: 4
patch_stride: 4
patch_size2: 2
patch_stride2: 2
layer_scale_init_value: 0 # no layer scale
drop_path_rate: 0.02
norm_layer:  BN
act_layer: GELU
n_div: 4

fasternet_t2.yaml 文件中粘贴以下内容:

mlp_ratio: 2
embed_dim: 96
depths: [1, 2, 8, 2]
feature_dim: 1280
patch_size: 4
patch_stride: 4
patch_size2: 2
patch_stride2: 2
layer_scale_init_value: 0 # no layer scale
drop_path_rate: 0.05
norm_layer:  BN
act_layer: RELU
n_div: 4

4.5 修改五

FasterNet.py 中,将模型配置路径修改成自己的路径,我的路径是: ultralytics/nn/AddModules/faster_cfg

分别有 6 个,均要修改

在这里插入图片描述

至此就修改完成了,可以配置模型开始训练了


五、yaml模型文件

5.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-FasterNet.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-FasterNet.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 替换成 fasternet_t0

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, fasternet_t0, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)


六、成功运行结果

分别打印网络模型可以看到 FasterNet模块 已经加入到模型中,并可以进行训练了。

rtdetr-FasterNet

rtdetr-FasterNet summary: 513 layers, 20,696,711 parameters, 20,696,711 gradients, 66.1 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1   2216100  fasternet_t0                                 []                            
  1                  -1  1     82432  ultralytics.nn.modules.conv.Conv             [320, 256, 1, 1, None, 1, 1, False]
  2                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  3                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  4                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  5                   3  1     41472  ultralytics.nn.modules.conv.Conv             [160, 256, 1, 1, None, 1, 1, False]
  6            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
  7                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
  8                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  9                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 10                   2  1     20992  ultralytics.nn.modules.conv.Conv             [80, 256, 1, 1, None, 1, 1, False]
 11            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 13                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 14            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 17             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 19        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-FasterNet summary: 513 layers, 20,696,711 parameters, 20,696,711 gradients, 66.1 GFLOPs