学习资源站

RT-DETR改进策略【模型轻量化】替换骨干网络CVPR-2024StarNet,超级精简高效的轻量化模块_rtdetr轻量化改进-

RT-DETR改进策略【模型轻量化】| 替换骨干网络 CVPR-2024 StarNet,超级精简高效的轻量化模块

一、本文介绍

本文记录的是 基于StarNet的RT-DETR轻量化改进方法研究 StarNet 设计简洁,没有复杂的设计和精细调整的超参数, 仅是一个 4 阶段的分层架构 。并且其中 星操作 能够在低维空间计算的同时考虑极高维的特征这一特性,进而提高模型精度 。本文在替换骨干网络中配置了原论文中的 starnet_s050 starnet_s100 starnet_s150 starnet_s1 starnet_s2 starnet_s3 starnet_s4 七种模型,以满足不同的需求。

模型 参数量 计算量 推理速度
rtdetr-l 32.8M 108.0GFLOPs 11.6ms
Improved 18.8.7M 61.8GFLOPs 11.3ms


二、🌟

Rewrite the Stars

StarNet 是一种基于 星操作 (star operation)的轻量化神经网络模型,以下是其相关介绍:

2.1 出发点

  • “星操作”的优势适配 :研究发现“星操作”(element - wise乘法)在网络设计中具有潜力,它能在不增加网络宽度的情况下将输入映射到高维非线性特征空间,类似核技巧。这种特性使得基于“星操作”的网络可能更适合高效、紧凑的网络结构,而不是传统的大型模型,从而启发了StarNet的设计。
  • 现有高效网络的局限性 :尽管已有多种提升网络效率的方法,如深度可分离卷积、特征复用和重参数化等,但“星操作”提供了一种新的思路,可以在低维空间计算的同时考虑极高维的特征,为高效网络设计提供了独特优势,促使研究人员探索基于“星操作”的轻量化模型。

2.2 原理

2.2.1 高维特征映射

  • 单一层的“星操作” :在神经网络的单一层中,“星操作”通常写为 ( W 1 T X + B 1 ) ∗ ( W 2 T X + B 2 ) (W_{1}^{T}X + B_{1})*(W_{2}^{T}X + B_{2}) ( W 1 T X + B 1 ) ( W 2 T X + B 2 ) ,经过改写和分析,可以发现它能将输入特征在 d d d 维空间中通过计算高效的操作,实现到 ( d + 2 ) ( d + 1 ) 2 ≈ ( d 2 ) 2 \frac{(d + 2)(d + 1)}{2}\approx(\frac{d}{\sqrt{2}})^{2} 2 ( d + 2 ) ( d + 1 ) ( 2 d ) 2 (考虑 d ≫ 2 d\gg2 d 2 )隐式维度特征空间的表示,每个项(除了部分特殊项)都与输入呈现非线性关联,即实现了高维特征映射。
  • 多层的“星操作” :当堆叠多层时,以初始网络层宽度为 d d d 为例,经过 l l l 层的“星操作”,可以隐式获得属于 R ( d 2 ) 2 l \mathbb{R}^{(\frac{d}{\sqrt{2}})^{2^{l}}} R ( 2 d ) 2 l 的特征空间。

例如,一个10层宽度为128的各向同性网络,通过“星操作”获得的隐式特征维度数近似为 901024 901024 901024 ,可合理近似为无限维度,从而实现了指数级的隐式维度增加。

2.2.2 与核函数的类比

  • “星操作”实现非线性高维的方式与传统神经网络通过增加网络宽度不同,它类似于核函数(特别是多项式核函数)对不同通道特征进行成对乘法操作。这种类比进一步说明了“星操作”在特征空间变换上的原理优势。

2.3 结构

2.3.1 整体架构

StarNet 是一个 4 阶段的分层架构。

在这里插入图片描述

2.3.2 下采样层

利用 卷积层 进行下采样。

2.3.3 特征提取模块

采用修改后的demo block进行特征提取。在每个block中,受MobileNeXt启发,在末尾包含深度可分离卷积;将demo block中的GELU激活函数替换为 ReLU6 ,遵循MobileNetv2的设计;

网络宽度在每个阶段翻倍,通道扩展因子固定为4;同时,为了满足效率要求,用批归一化(Batch Normalization)替代层归一化(Layer Normalization),并放在深度可分离卷积之后(在推理时可融合)。

通过改变block数量和输入嵌入通道数来构建不同大小的 StarNet

在这里插入图片描述

2.4 优势

  • 性能优异
    • 实验验证 :在ImageNet - 1K验证集上,StarNet - S4相对于EdgeViT - XS在top - 1准确率上提高了 0.9 % 0.9\% 0.9% ,同时在iPhone13和CPU上运行速度快 3 3 3 倍,在GPU上快 2 2 2 倍。与其他精心设计的高效模型相比,如MobileNetv3、EdgeViT、FasterNet等,StarNet在性能上也具有竞争力。
    • 设计简洁高效 StarNet 设计简洁,没有复杂的设计和精细调整的超参数,却能取得优异的性能,这体现了 星操作 在网络设计中的有效性,也证明了基于“星操作”的轻量化设计理念的优势。
  • 低延迟 :在不同的硬件平台上,包括移动设备(如iPhone系列)和服务器端的CPU、GPU,StarNet都展现出了较低的延迟。例如在iPhone13上,StarNet - S1能在 0.7 0.7 0.7 秒内达到 73.5 % 73.5\% 73.5% 的top - 1准确率,与MobileOne - S0相比,在相同延迟下准确率提高了 2.1 % 2.1\% 2.1% 。这种低延迟特性使得 StarNet 在实际应用中具有很大的优势,特别是对于对实时性要求较高的任务。
  • 通用性和可扩展性 StarNet 的设计基于通用的神经网络架构原则,并通过 星操作 进行了优化。这种设计使得它具有较好的通用性,可以应用于各种计算机视觉任务。同时,通过调整模型的深度和宽度等参数,可以方便地对模型进行扩展,以适应不同的应用场景和性能需求。

论文: https://arxiv.org/pdf/2403.19967
源码: https://github.com/ma-xu/Rewrite-the-Stars

三、StarNet模块的实现代码

StarNet模块 的实现代码如下:

"""
Implementation of Prof-of-Concept Network: StarNet.

We make StarNet as simple as possible [to show the key contribution of element-wise multiplication]:
    - like NO layer-scale in network design,
    - and NO EMA during training,
    - which would improve the performance further.

Created by: Xu Ma (Email: ma.xu1@northeastern.edu)
Modified Date: Mar/29/2024
"""
import torch
import torch.nn as nn
from timm.models.layers import DropPath, trunc_normal_

__all__ = ['starnet_s050', 'starnet_s100', 'starnet_s150', 'starnet_s1', 'starnet_s2', 'starnet_s3', 'starnet_s4']

model_urls = {
    "starnet_s1": "https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s1.pth.tar",
    "starnet_s2": "https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s2.pth.tar",
    "starnet_s3": "https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s3.pth.tar",
    "starnet_s4": "https://github.com/ma-xu/Rewrite-the-Stars/releases/download/checkpoints_v1/starnet_s4.pth.tar",
}

class ConvBN(torch.nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=1, stride=1, padding=0, dilation=1, groups=1, with_bn=True):
        super().__init__()
        self.add_module('conv', torch.nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, dilation, groups))
        if with_bn:
            self.add_module('bn', torch.nn.BatchNorm2d(out_planes))
            torch.nn.init.constant_(self.bn.weight, 1)
            torch.nn.init.constant_(self.bn.bias, 0)

class Block(nn.Module):
    def __init__(self, dim, mlp_ratio=3, drop_path=0.):
        super().__init__()
        self.dwconv = ConvBN(dim, dim, 7, 1, (7 - 1) // 2, groups=dim, with_bn=True)
        self.f1 = ConvBN(dim, mlp_ratio * dim, 1, with_bn=False)
        self.f2 = ConvBN(dim, mlp_ratio * dim, 1, with_bn=False)
        self.g = ConvBN(mlp_ratio * dim, dim, 1, with_bn=True)
        self.dwconv2 = ConvBN(dim, dim, 7, 1, (7 - 1) // 2, groups=dim, with_bn=False)
        self.act = nn.ReLU6()
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

    def forward(self, x):
        input = x
        x = self.dwconv(x)
        x1, x2 = self.f1(x), self.f2(x)
        x = self.act(x1) * x2
        x = self.dwconv2(self.g(x))
        x = input + self.drop_path(x)
        return x

class StarNet(nn.Module):
    def __init__(self, base_dim=32, depths=[3, 3, 12, 5], mlp_ratio=4, drop_path_rate=0.0, num_classes=1000, **kwargs):
        super().__init__()
        self.num_classes = num_classes
        self.in_channel = 32
        # stem layer
        self.stem = nn.Sequential(ConvBN(3, self.in_channel, kernel_size=3, stride=2, padding=1), nn.ReLU6())
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth
        # build stages
        self.stages = nn.ModuleList()
        cur = 0
        for i_layer in range(len(depths)):
            embed_dim = base_dim * 2 ** i_layer
            down_sampler = ConvBN(self.in_channel, embed_dim, 3, 2, 1)
            self.in_channel = embed_dim
            blocks = [Block(self.in_channel, mlp_ratio, dpr[cur + i]) for i in range(depths[i_layer])]
            cur += depths[i_layer]
            self.stages.append(nn.Sequential(down_sampler, *blocks))
        
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, nn.Linear or nn.Conv2d):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm or nn.BatchNorm2d):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)

    def forward(self, x):
        features = []
        x = self.stem(x)
        features.append(x)
        for stage in self.stages:
            x = stage(x)
            features.append(x)
        return features

def starnet_s1(pretrained=False, **kwargs):
    model = StarNet(24, [2, 2, 8, 3], **kwargs)
    if pretrained:
        url = model_urls['starnet_s1']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["state_dict"], strict=False)
    return model

def starnet_s2(pretrained=False, **kwargs):
    model = StarNet(32, [1, 2, 6, 2], **kwargs)
    if pretrained:
        url = model_urls['starnet_s2']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["state_dict"], strict=False)
    return model

def starnet_s3(pretrained=False, **kwargs):
    model = StarNet(32, [2, 2, 8, 4], **kwargs)
    if pretrained:
        url = model_urls['starnet_s3']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["state_dict"], strict=False)
    return model

def starnet_s4(pretrained=False, **kwargs):
    model = StarNet(32, [3, 3, 12, 5], **kwargs)
    if pretrained:
        url = model_urls['starnet_s4']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu")
        model.load_state_dict(checkpoint["state_dict"], strict=False)
    return model

# very small networks #

def starnet_s050(pretrained=False, **kwargs):
    return StarNet(16, [1, 1, 3, 1], 3, **kwargs)

def starnet_s100(pretrained=False, **kwargs):
    return StarNet(20, [1, 2, 4, 1], 4, **kwargs)

def starnet_s150(pretrained=False, **kwargs):
    return StarNet(24, [1, 2, 4, 2], 3, **kwargs)


四、修改步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 StarNet.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .StarNet import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要添加各模块类。

① 首先:导入模块

在这里插入图片描述

② 在BaseModel类的predict函数中,在如下两处位置中去掉 embed 参数:

在这里插入图片描述

③ 在BaseModel类的_predict_once函数,替换如下代码:

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

在这里插入图片描述

④ 将 RTDETRDetectionModel类 中的 predict函数 完整替换:

    def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt = [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # for i in x:
                #     if i is not None:
                #         print(i.size())
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

在这里插入图片描述

⑤ 在 parse_model函数 如下位置替换如下代码:

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a

替换后如下:

在这里插入图片描述

⑥ 在 parse_model 函数,添加如下代码。

elif m in { starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4,}:
    m = m(*args)
    c2 = m.channel

在这里插入图片描述

⑦ 在 parse_model函数 如下位置替换如下代码:

    	if isinstance(c2, list):
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        
        m_.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m_.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

在这里插入图片描述

⑧ 在 ultralytics\nn\autobackend.py 文件的 AutoBackend类 中的 forward函数 ,完整替换如下代码:

    def forward(self, im, augment=False, visualize=False):
        """
        Runs inference on the YOLOv8 MultiBackend model.

        Args:
            im (torch.Tensor): The image tensor to perform inference on.
            augment (bool): whether to perform data augmentation during inference, defaults to False
            visualize (bool): whether to visualize the output predictions, defaults to False

        Returns:
            (tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
        """
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.fp16 and im.dtype != torch.float16:
            im = im.half()  # to FP16
        if self.nhwc:
            im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)

        if self.pt or self.nn_module:  # PyTorch
            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
        elif self.jit:  # TorchScript
            y = self.model(im)
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            y = list(self.ov_compiled_model(im).values())
        elif self.engine:  # TensorRT
            if self.dynamic and im.shape != self.bindings['images'].shape:
                i = self.model.get_binding_index('images')
                self.context.set_binding_shape(i, im.shape)  # reshape if dynamic
                self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
                for name in self.output_names:
                    i = self.model.get_binding_index(name)
                    self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
            s = self.bindings['images'].shape
            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = [self.bindings[x].data for x in sorted(self.output_names)]
        elif self.coreml:  # CoreML
            im = im[0].cpu().numpy()
            im_pil = Image.fromarray((im * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.BILINEAR)
            y = self.model.predict({'image': im_pil})  # coordinates are xywh normalized
            if 'confidence' in y:
                raise TypeError('Ultralytics only supports inference of non-pipelined CoreML models exported with '
                                f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export.")
                # TODO: CoreML NMS inference handling
                # from ultralytics.utils.ops import xywh2xyxy
                # box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                # conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
                # y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            elif len(y) == 1:  # classification model
                y = list(y.values())
            elif len(y) == 2:  # segmentation model
                y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)
        elif self.paddle:  # PaddlePaddle
            im = im.cpu().numpy().astype(np.float32)
            self.input_handle.copy_from_cpu(im)
            self.predictor.run()
            y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
        elif self.ncnn:  # ncnn
            mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
            ex = self.net.create_extractor()
            input_names, output_names = self.net.input_names(), self.net.output_names()
            ex.input(input_names[0], mat_in)
            y = []
            for output_name in output_names:
                mat_out = self.pyncnn.Mat()
                ex.extract(output_name, mat_out)
                y.append(np.array(mat_out)[None])
        elif self.triton:  # NVIDIA Triton Inference Server
            im = im.cpu().numpy()  # torch to numpy
            y = self.model(im)
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.cpu().numpy()
            if self.saved_model:  # SavedModel
                y = self.model(im, training=False) if self.keras else self.model(im)
                if not isinstance(y, list):
                    y = [y]
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im))
                if len(y) == 2 and len(self.names) == 999:  # segments and names not defined
                    ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0)  # index of protos, boxes
                    nc = y[ib].shape[1] - y[ip].shape[3] - 4  # y = (1, 160, 160, 32), (1, 116, 8400)
                    self.names = {i: f'class{i}' for i in range(nc)}
            else:  # Lite or Edge TPU
                details = self.input_details[0]
                integer = details['dtype'] in (np.int8, np.int16)  # is TFLite quantized int8 or int16 model
                if integer:
                    scale, zero_point = details['quantization']
                    im = (im / scale + zero_point).astype(details['dtype'])  # de-scale
                self.interpreter.set_tensor(details['index'], im)
                self.interpreter.invoke()
                y = []
                for output in self.output_details:
                    x = self.interpreter.get_tensor(output['index'])
                    if integer:
                        scale, zero_point = output['quantization']
                        x = (x.astype(np.float32) - zero_point) * scale  # re-scale
                    if x.ndim > 2:  # if task is not classification
                        # Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
                        # xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
                        x[:, [0, 2]] *= w
                        x[:, [1, 3]] *= h
                    y.append(x)
            # TF segment fixes: export is reversed vs ONNX export and protos are transposed
            if len(y) == 2:  # segment with (det, proto) output order reversed
                if len(y[1].shape) != 4:
                    y = list(reversed(y))  # should be y = (1, 116, 8400), (1, 160, 160, 32)
                y[1] = np.transpose(y[1], (0, 3, 1, 2))  # should be y = (1, 116, 8400), (1, 32, 160, 160)
            y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]

        # for x in y:
        #     print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape)  # debug shapes
        if isinstance(y, (list, tuple)):
            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
        else:
            return self.from_numpy(y)

在这里插入图片描述

至此就修改完成了,可以配置模型开始训练了


五、yaml模型文件

5.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-StarNet.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-StarNet.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 替换成 starnet_s050

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, starnet_s050, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)


六、成功运行结果

分别打印网络模型可以看到 StarNet模块 已经加入到模型中,并可以进行训练了。

rtdetr-StarNet

rtdetr-StarNet summary: 483 layers, 18,808,067 parameters, 18,808,067 gradients, 61.8 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1    413472  starnet_s050                                 []                            
  1                  -1  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
  2                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  3                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  4                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  5                   3  1     16896  ultralytics.nn.modules.conv.Conv             [64, 256, 1, 1, None, 1, 1, False]
  6            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
  7                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
  8                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  9                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 10                   2  1      8704  ultralytics.nn.modules.conv.Conv             [32, 256, 1, 1, None, 1, 1, False]
 11            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 13                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 14            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 17             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 19        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-StarNet summary: 483 layers, 18,808,067 parameters, 18,808,067 gradients, 61.8 GFLOPs