学习资源站

RT-DETR改进策略【卷积层】 AAAI 2025 风车状卷积PConv,实现感受野的高效扩张-

RT-DETR改进策略【卷积层】| AAAI 2025 风车状卷积PConv,实现感受野的高效扩张

一、本文介绍

本文记录的是 利用风车卷积改进RT-DETR的目标检测网络模型。

在红外小目标检测任务中,传统卷积方式 难以捕捉目标像素的空间特征 ,影响检测性能,因此需要更适配的卷积方式提升特征提取能力。但 不同尺度的红外小目标对特征提取需求有差异 ,为了更好地满足这些需求,本文利用 风车卷积PConv 模块改进 RT-DETR ,使模型能够 更精准地对齐红外小目标像素的高斯空间分布,在增强底层特征提取的同时显著扩大感受野 ,使网络更好地适应不同尺度红外小目标的检测需求。



二、风车卷积介绍

Pinwheel-shaped Convolution and Scale-based Dynamic Loss for Infrared Small Target Detection

2.1 设计出发点

传统基于卷积神经网络的红外小目标检测方法多采用标准卷积,忽略了红外小目标像素分布的空间特性。分析红外小目标的3D灰度分布可知其具有高斯特征,而标准卷积无法很好地契合这一特性,影响了底层特征提取效果。为提升CNN对红外小目标底层特征的分析能力,提出了PConv模块。

2.2 结构原理

PConv模块采用非对称填充方式,为图像不同区域创建水平和垂直卷积核 。

在这里插入图片描述

模块内部通过多层卷积操作,对输入张量 X ( h 1 , w 1 , c 1 ) X^{(h_{1}, w_{1}, c_{1})} X ( h 1 , w 1 , c 1 ) 进行处理。第一层进行并行卷积,利用公式计算得到多个中间结果,如 X 1 ( h ′ , w ′ , c ′ ) = S i L U ( B N ( X P ( 1 , 0 , 0 , 3 ) ( h 1 , w 1 , c 1 ) ⊗ W 1 ( 1 , 3 , c ′ ) ) ) X_{1}^{\left(h', w', c'\right)}=SiLU\left(BN\left(X_{P(1,0,0,3)}^{\left(h_{1}, w_{1}, c_{1}\right)} \otimes W_{1}^{\left(1,3, c'\right)}\right)\right) X 1 ( h , w , c ) = S i LU ( BN ( X P ( 1 , 0 , 0 , 3 ) ( h 1 , w 1 , c 1 ) W 1 ( 1 , 3 , c ) ) ) 等。这些结果经过拼接后,再由特定卷积核归一化处理,最终得到输出特征图。其输出特征图的尺寸与输入特征图尺寸存在特定关系,如 h ′ = h 1 s + 1 h'=\frac{h_{1}}{s}+1 h = s h 1 + 1 等。

此外,PConv模块还利用分组卷积,在增加感受野的同时减少参数数量。

2.3优势

  1. 增强特征提取,PConv模块更好地对齐了红外小目标的像素高斯空间分布,相比标准卷积,能更有效地提取底层特征,通过可视化结果可知其增强了目标与背景的对比度,抑制了杂波信号。
  2. 显著扩大感受野,PConv模块的感受野类似高斯分布,向外逐渐减弱 。以 k = 3 k=3 k = 3 的PConv为例,其感受野为25,相比标准卷积有大幅提升。
  3. 参数增加少,在不同卷积核设置下,与标准卷积相比,PConv在增加感受野的同时,参数增加幅度较小,如 k = 3 k=3 k = 3 时,相比 3 × 3 3×3 3 × 3 标准卷积,PConv增加111%的参数,却使感受野扩大178%,实现了高效的感受野扩展和参数利用。

论文: https://arxiv.org/pdf/2412.16986v1
源码: https://github.com/JN-Yang/PConv-SDloss-Data

三、风车卷积的实现代码

风车卷积模块 的实现代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules.conv import LightConv
"""风车型卷积,使用了padding再各个方向上实现方向敏感性,增加了参数量"""

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""

    default_act = nn.SiLU()  # default activation

    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()

    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class PConv(nn.Module):  
    ''' Pinwheel-shaped Convolution using the Asymmetric Padding method. '''
    
    def __init__(self, c1, c2, k, s):
        super().__init__()

        # self.k = k
        p = [(k, 0, 1, 0), (0, k, 0, 1), (0, 1, k, 0), (1, 0, 0, k)]
        self.pad = [nn.ZeroPad2d(padding=(p[g])) for g in range(4)]
        self.cw = Conv(c1, c2 // 4, (1, k), s=s, p=0)
        self.ch = Conv(c1, c2 // 4, (k, 1), s=s, p=0)
        self.cat = Conv(c2, c2, 2, s=1, p=0)

    def forward(self, x):
        yw0 = self.cw(self.pad[0](x))
        yw1 = self.cw(self.pad[1](x))
        yh0 = self.ch(self.pad[2](x))
        yh1 = self.ch(self.pad[3](x))
        return self.cat(torch.cat([yw0, yw1, yh0, yh1], dim=1))
    
class HGBlock_APConv(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = PConv(c1, c2, 3, 1)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = PConv(c2, c2, 3, 1)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))

class ResNetLayer_APConv(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

if __name__ == "__main__":
    x = torch.randn(1, 32, 64, 64).cuda()
    xm = torch.randn(1, 1, 320, 320).cuda()
    model = PConv(c1=32,c2=32,k=3,s=1).cuda()
    #model = Conv(c1=32, c2=32, k=3, s=1).cuda()
    y  = model(x)
    print(y.size())
    print("最大内存占用:", torch.cuda.max_memory_allocated() // 1024 // 1024, "MB")
    # | 模块   | 参数量 | FLOPs   | 特征提取能力       |
    # |--------|--------|---------|--------------------|
    # | Conv   | 3.7K   | 2.4G    | 各向同性特征        |
    # | PConv  | 25.6K  | 3.2G    | 方向敏感特征        |


四、创新模块

4.1 改进点⭐

模块改进方法 :在 HGBlock 中加入 风车卷积 第五节讲解添加步骤 )。

风车卷积 添加后如下:

class HGBlock_APConv(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = PConv(c1, c2, 3, 1)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 风车卷积模块 ResNetLayer 第五节讲解添加步骤 )。

改进代码如下:

首先添加 风车卷积 改进 ResNetBlock 模块。

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = PConv(c2, c2, 3, 1)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))
    

在这里插入图片描述

然后将 ResNetLayer 重命名为 ResNetLayer_APConv

class ResNetLayer_APConv(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: HGBlock_APConv ResNetLayer_APConv


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 APConv.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .APConv import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在指定位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 HGBlock_APConv ResNetLayer_APConv 模块

在这里插入图片描述

parse_model函数 的如下添加模块:

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_APConv.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_APConv.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 HGBlock模块 替换成 HGBlock_APConv模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_APConv, [192, 512, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_APConv, [192, 512, 5, True, True]]
  - [-1, 6, HGBlock_APConv, [192, 512, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock_APConv, [384, 1024, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_APConv.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_APConv.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的所有 ResNetLayer模块 替换成 ResNetLayer_APConv模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_APConv, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_APConv, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_APConv, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_APConv, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_APConv, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 HGBlock_APConv ResNetLayer_APConv 已经加入到模型中,并可以进行训练了。

rtdetr-l-HGBlock_APConv

rtdetr-l-HGBlock_APConv summary: 723 layers, 36,052,163 parameters, 36,052,163 gradients, 118.7 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   2317952  ultralytics.nn.AddModules.APConv.HGBlock_APConv[512, 192, 512, 5, 6, True, False]
  6                  -1  6   2317952  ultralytics.nn.AddModules.APConv.HGBlock_APConv[512, 192, 512, 5, 6, True, True]
  7                  -1  6   2317952  ultralytics.nn.AddModules.APConv.HGBlock_APConv[512, 192, 512, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   9198848  ultralytics.nn.AddModules.APConv.HGBlock_APConv[1024, 384, 1024, 5, 6, True, False]
 10                  -1  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_APConv summary: 723 layers, 36,052,163 parameters, 36,052,163 gradients, 118.7 GFLOPs

rtdetr-ResNetLayer_APConv

rtdetr-ResNetLayer_APConv summary: 753 layers, 49,690,211 parameters, 49,690,211 gradients, 154.6 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.APConv.ResNetLayer_APConv[3, 64, 1, True, 1]           
  1                  -1  1    283968  ultralytics.nn.AddModules.APConv.ResNetLayer_APConv[64, 64, 1, False, 3]         
  2                  -1  1   1581568  ultralytics.nn.AddModules.APConv.ResNetLayer_APConv[256, 128, 2, False, 4]       
  3                  -1  1   9265664  ultralytics.nn.AddModules.APConv.ResNetLayer_APConv[512, 256, 2, False, 6]       
  4                  -1  1  19294720  ultralytics.nn.AddModules.APConv.ResNetLayer_APConv[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_APConv summary: 753 layers, 49,690,211 parameters, 49,690,211 gradients, 154.6 GFLOPs