学习资源站

RT-DETR改进策略【注意力机制篇】引入MobileNetv4中的MobileMQA,轻量化注意力模块提高模型效率-

RT-DETR改进策略【注意力机制篇】| 引入MobileNetv4中的Mobile MQA,轻量化注意力模块 提高模型效率

一、本文介绍

本文记录的是 基于Mobile MQA模块的RT-DETR目标检测改进方法研究 MobileNetv4 中的 Mobile MQA模块 是用于模型加速,减少内存访问的模块,相比其他全局的自注意力, 其不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。



二、Mobile MQA注意力原理

在论文 《MobileNetV4 - Universal Models for the Mobile Ecosystem》 中,提出了 Mobile MQA

一、原理

  1. 基于MQA改进并结合不对称空间下采样
    • MQA(Multi-Query Attention) 简化了传统的多头注意力机制,通过共享 keys values 来减少内存访问需求。在移动混合模型中,当批量大小较小时,这种方式能有效提高运算强度。
    • 借鉴 MQA 中对 queries keys values 的不对称计算方式, Mobile MQA 引入了空间缩减注意力(SRA),对 keys values 进行下采样,同时保持高分辨率的queries。这是因为在混合模型中,早期层的空间混合卷积滤波器使得空间上相邻的标记具有相关性。
    • Mobile MQA 的计算公式为:
      M o b i l e _ M Q A ( X ) = C o n c a t ( a t t e n t i o n 1 , . . . , a t t e n t i o n n ) W O Mobile\_MQA(X)= Concat(attention_1,...,attention_n)W^{O} M o bi l e _ MQ A ( X ) = C o n c a t ( a tt e n t i o n 1 , ... , a tt e n t i o n n ) W O
      其中 a t t e n t i o n j = s o f t m a x ( ( X W Q j ) ( S R ( X ) W K ) T d k ) ( S R ( X ) W V ) attention_j = softmax(\frac{(XW^{Q_j})(SR(X)W^{K})^{T}}{\sqrt{d_k}})(SR(X)W^{V}) a tt e n t i o n j = so f t ma x ( d k ( X W Q j ) ( SR ( X ) W K ) T ) ( SR ( X ) W V ) ,这里 SR 可以是空间缩减操作(在设计中是一个步长为2的3x3深度卷积),也可以是恒等函数(当不进行空间缩减时)。

二、特点

  1. 针对加速器优化 :专门为移动加速器进行了优化,考虑了移动加速器的计算和内存特性。
  2. 不对称空间下采样 :通过对 keys values 进行下采样,保持queries的高分辨率,在不损失太多精度的情况下,显著提高了效率。
  3. 操作简单高效 :相比传统的注意力机制, Mobile MQA 的设计更加简单,操作更加高效,更适合在移动设备上运行。

论文: http://arxiv.org/abs/2404.10518
源码: https://github.com/tensorflow/models/blob/master/official/vision/modeling/backbones/mobilenet.py

三、Mobile MQA的实现代码

Mobile MQA模块 的实现代码如下:


import torch
import torch.nn as nn
import torch.nn.functional as F

def conv2d(in_channels, out_channels, kernel_size=3, stride=1, groups=1, bias=False, norm=True, act=True):
    conv = nn.Sequential()
    padding = (kernel_size - 1) // 2
    conv.append(nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias, groups=groups))
    if norm:
        conv.append(nn.BatchNorm2d(out_channels))
    if act:
        conv.append(nn.ReLU6())
    return conv

class MultiQueryAttentionLayerWithDownSampling(nn.Module):
    def __init__(self, in_channels, num_heads, key_dim, value_dim, query_h_strides, query_w_strides, kv_strides, dw_kernel_size=3, dropout=0.0):
        """Multi Query Attention with spatial downsampling.
        Referenced from here https://github.com/tensorflow/models/blob/master/official/vision/modeling/layers/nn_blocks.py

        3 parameters are introduced for the spatial downsampling:
        1. kv_strides: downsampling factor on Key and Values only.
        2. query_h_strides: vertical strides on Query only.
        3. query_w_strides: horizontal strides on Query only.

        This is an optimized version.
        1. Projections in Attention is explict written out as 1x1 Conv2D.
        2. Additional reshapes are introduced to bring a up to 3x speed up.
        """
        super(MultiQueryAttentionLayerWithDownSampling, self).__init__()
        self.num_heads = num_heads
        self.key_dim = key_dim
        self.value_dim = value_dim
        self.query_h_strides = query_h_strides
        self.query_w_strides = query_w_strides
        self.kv_strides = kv_strides
        self.dw_kernel_size = dw_kernel_size
        self.dropout = dropout

        self.head_dim = self.key_dim // num_heads

        if self.query_h_strides > 1 or self.query_w_strides > 1:
            self._query_downsampling_norm = nn.BatchNorm2d(in_channels)
        self._query_proj = conv2d(in_channels, self.num_heads * self.key_dim, 1, 1, norm=False, act=False)

        if self.kv_strides > 1:
            self._key_dw_conv = conv2d(in_channels, in_channels, dw_kernel_size, kv_strides, groups=in_channels,
                                       norm=True, act=False)
            self._value_dw_conv = conv2d(in_channels, in_channels, dw_kernel_size, kv_strides, groups=in_channels,
                                         norm=True, act=False)
        self._key_proj = conv2d(in_channels, key_dim, 1, 1, norm=False, act=False)
        self._value_proj = conv2d(in_channels, key_dim, 1, 1, norm=False, act=False)
        self._output_proj = conv2d(num_heads * key_dim, in_channels, 1, 1, norm=False, act=False)

        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x):
        bs, seq_len, _, _ = x.size()
        # print(x.size())
        if self.query_h_strides > 1 or self.query_w_strides > 1:
            q = F.avg_pool2d(self.query_h_strides, self.query_w_strides)
            q = self._query_downsampling_norm(q)
            q = self._query_proj(q)
        else:
            q = self._query_proj(x)
        px = q.size(2)
        q = q.view(bs, self.num_heads, -1, self.key_dim)  # [batch_size, num_heads, seq_len, key_dim]

        if self.kv_strides > 1:
            k = self._key_dw_conv(x)
            k = self._key_proj(k)
            v = self._value_dw_conv(x)
            v = self._value_proj(v)
        else:
            k = self._key_proj(x)
            v = self._value_proj(x)
        k = k.view(bs, 1, self.key_dim, -1)   # [batch_size, 1, key_dim, seq_length]
        v = v.view(bs, 1, -1, self.key_dim)    # [batch_size, 1, seq_length, key_dim]

        # calculate attention score
        # print(q.shape, k.shape, v.shape)
        attn_score = torch.matmul(q, k) / (self.head_dim ** 0.5)
        attn_score = self.dropout(attn_score)
        attn_score = F.softmax(attn_score, dim=-1)

        # context = torch.einsum('bnhm,bmv->bnhv', attn_score, v)
        # print(attn_score.shape, v.shape)
        context = torch.matmul(attn_score, v)
        context = context.view(bs, self.num_heads * self.key_dim, px, px)
        output = self._output_proj(context)
        # print(output.shape)
        return output

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = MultiQueryAttentionLayerWithDownSampling(c2, 2, 48, 48, 1, 1, 1)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))

class ResNetLayer_MQA(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)
参数 解释
in_channels 输入通道数
num_heads 自注意力头的数量
key_dim 键的维度
key_dim 值的维度
value_dim 仅对键和值进行下采样,1不进行下采样,2下采样
query_h_strides 仅用于查询的,在H方向上的步长
query_w_strides 仅用于查询的,在W方向上的步长
dw_kernel_size=3 深度可分离卷积的卷积核大小
dropout=0.0 随机丢失比例

四、添加步骤

4.1 改进点⭐

模块改进方法 :基于 Mobile MQA模块 ResNetLayer

改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进。 MobileNetv4 中的 Mobile MQA模块 可用于模型加速,减少内存访问的模块,相比其他全局的自注意力,利用 Mobile MQA 改进 ResNetLayer模块 后, 不仅加强了模型对全局信息的关注,同时也显著提高了模型效率。

改进代码如下:

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = MultiQueryAttentionLayerWithDownSampling(c2, 2, 48, 48, 1, 1, 1)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))

class ResNetLayer_MQA(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

在这里插入图片描述

在这里插入图片描述

注意❗:需要声明的模块名称为: ResNetLayer_MQA


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 MQA.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .MQA import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 ResNetLayer_MQA 模块

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-HGBlock_CAA.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-HGBlock_CAA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 ResNetLayer模块 替换成 ResNetLayer_MQA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_MQA, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_MQA, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_MQA, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_MQA, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_MQA, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


六、成功运行结果

分别打印网络模型可以看到 ResNetLayer_MQA 已经加入到模型中,并可以进行训练了。

rtdetr-ResNetLayer_MQA

rtdetr-ResNetLayer_MQA summary: 753 layers, 43,850,275 parameters, 43,850,275 gradients, 137.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.MQA.ResNetLayer_MQA[3, 64, 1, True, 1]           
  1                  -1  1    271104  ultralytics.nn.AddModules.MQA.ResNetLayer_MQA[64, 64, 1, False, 3]         
  2                  -1  1   1367040  ultralytics.nn.AddModules.MQA.ResNetLayer_MQA[256, 128, 2, False, 4]       
  3                  -1  1   7540736  ultralytics.nn.AddModules.MQA.ResNetLayer_MQA[512, 256, 2, False, 6]       
  4                  -1  1  15407104  ultralytics.nn.AddModules.MQA.ResNetLayer_MQA[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_MQA summary: 753 layers, 43,850,275 parameters, 43,850,275 gradients, 137.0 GFLOPs