学习资源站

RT-DETR改进策略【Neck】TPAMI2024FreqFusion频域感知特征融合模块解决密集图像预测问题-

RT-DETR改进策略【Neck】| TPAMI 2024 FreqFusion 频域感知特征融合模块 解决密集图像预测问题

一、本文介绍

本文主要 利用FreqFusion结构改进RT-DETR的目标检测网络模型 FreqFusion结构 针对传统特征融合在 密集图像预测 中存在的问题,创新性地引入 自适应低通滤波器生成器 偏移量生成器 自适应高通滤波器生成器 。将 FreqFusion 应用于 RT-DETR 的改进过程中,能够使模型在处理复杂场景图像时, 更精准地聚焦目标物体边界,减少背景噪声干扰,显著强化目标物体边界特征表达 ,进而提升模型在复杂场景下对目标物体的检测精度与定位准确性。



二、FreqFusion介绍

Frequency-aware Feature Fusion for Dense Image Prediction

FreqFusion 是一种旨在 解决密集图像预测任务中特征融合问题 的方法,以下从其结构设计的出发点、结构、原理和作用等方面进行详细介绍:

2.1 出发点

标准特征融合技术存在两个问题,即 类别内不一致性 边界位移

例如,同一物体不同部分的特征差异大导致类别内不一致;简单插值使特征过度平滑导致边界位移,且下层次特征的详细边界信息未被充分利用。

2.2 结构

自适应低通滤波器(ALPF)生成器 偏移生成器 自适应高通滤波器(AHPF)生成器 三个关键组件构成。

在这里插入图片描述

2.3 原理

  1. 首先进行 初始融合 将低层次和高层次特征压缩并融合 ,为三个生成器提供输入。
    • 简单初始融合存在不足,一是 采用简单插值上采样压缩特征导致边界模糊
    • 二是 ALPF生成器 依赖高频信息,但 传统卷积层只能捕获固定高频模式
    • 为此进行了增强,利用 ALPF生成器 生成 初始低通滤波器 上采样压缩的高层次特征 ,并采用 AHPF生成器 提取特征图中的高频分量
  2. ALPF生成器 以初始融合的 z l z^{l} z l 为输入,通过 3×3卷积层 Softmax层 预测 空间变化的低通滤波器 。接着使用 亚像素上采样技术 ,将低通滤波器重构成4组,得到4组低通滤波后的特征,再重新排列形成 上采样后的特征
  3. 偏移生成器 根据 局部相似度 计算偏移量,用于重采样特征像素, 用具有高类别内相似度的附近特征替换高层次特征中的不一致特征。
  4. AHPF生成器 预测并应用空间变化的高通滤波器到低层次特征,以 增强下采样过程中丢失的高频细节信息,从而更准确地描绘边界。

在这里插入图片描述

2.4 作用

FreqFusion 通过自适应地用空间变化的低通滤波器平滑高层次特征、重采样附近类别一致的特征来替换高层次特征中的不一致特征、增强低层次特征的高频边界细节,来解决类别不一致性和边界位移问题,从而恢复具有一致类别信息和清晰边界的融合特征。提高了特征一致性和边界清晰度,在各种密集预测任务中取得了显著的性能提升。

论文: https://arxiv.org/pdf/2408.12879
源码: https://github.com/Linwei-Chen/FreqFusion

三、FreqFusion的实现代码

FreqFusion模块 的实现代码如下:

# TPAMI 2024:Frequency-aware Feature Fusion for Dense Image Prediction

import torch
import torch.nn as nn
import torch.nn.functional as F
try:
    from mmcv.ops.carafe import normal_init, xavier_init, carafe
except ImportError:
    pass
from torch.utils.checkpoint import checkpoint
import warnings
import numpy as np

__all__ = ['FreqFusion']

def normal_init(module, mean=0, std=1, bias=0):
    if hasattr(module, 'weight') and module.weight is not None:
        nn.init.normal_(module.weight, mean, std)
    if hasattr(module, 'bias') and module.bias is not None:
        nn.init.constant_(module.bias, bias)

def constant_init(module, val, bias=0):
    if hasattr(module, 'weight') and module.weight is not None:
        nn.init.constant_(module.weight, val)
    if hasattr(module, 'bias') and module.bias is not None:
        nn.init.constant_(module.bias, bias)

def resize(input,
           size=None,
           scale_factor=None,
           mode='nearest',
           align_corners=None,
           warning=True):
    if warning:
        if size is not None and align_corners:
            input_h, input_w = tuple(int(x) for x in input.shape[2:])
            output_h, output_w = tuple(int(x) for x in size)
            if output_h > input_h or output_w > input_w:
                if ((output_h > 1 and output_w > 1 and input_h > 1
                     and input_w > 1) and (output_h - 1) % (input_h - 1)
                        and (output_w - 1) % (input_w - 1)):
                    warnings.warn(
                        f'When align_corners={align_corners}, '
                        'the output would more aligned if '
                        f'input size {(input_h, input_w)} is `x+1` and '
                        f'out size {(output_h, output_w)} is `nx+1`')
    return F.interpolate(input, size, scale_factor, mode, align_corners)

def hamming2D(M, N):
    """
    生成二维Hamming窗

    参数:
    - M:窗口的行数
    - N:窗口的列数

    返回:
    - 二维Hamming窗
    """
    # 生成水平和垂直方向上的Hamming窗
    # hamming_x = np.blackman(M)
    # hamming_x = np.kaiser(M)
    hamming_x = np.hamming(M)
    hamming_y = np.hamming(N)
    # 通过外积生成二维Hamming窗
    hamming_2d = np.outer(hamming_x, hamming_y)
    return hamming_2d

class FreqFusion(nn.Module):
    def __init__(self,
                channels,
                scale_factor=1,
                lowpass_kernel=5,
                highpass_kernel=3,
                up_group=1,
                encoder_kernel=3,
                encoder_dilation=1,
                compressed_channels=64,        
                align_corners=False,
                upsample_mode='nearest',
                feature_resample=False, # use offset generator or not
                feature_resample_group=4,
                comp_feat_upsample=True, # use ALPF & AHPF for init upsampling
                use_high_pass=True,
                use_low_pass=True,
                hr_residual=True,
                semi_conv=True,
                hamming_window=True, # for regularization, do not matter really
                feature_resample_norm=True,
                **kwargs):
        super().__init__()
        hr_channels, lr_channels = channels
        self.scale_factor = scale_factor
        self.lowpass_kernel = lowpass_kernel
        self.highpass_kernel = highpass_kernel
        self.up_group = up_group
        self.encoder_kernel = encoder_kernel
        self.encoder_dilation = encoder_dilation
        self.compressed_channels = (hr_channels + lr_channels) // 8
        self.hr_channel_compressor = nn.Conv2d(hr_channels, self.compressed_channels,1)
        self.lr_channel_compressor = nn.Conv2d(lr_channels, self.compressed_channels,1)
        self.content_encoder = nn.Conv2d( # ALPF generator
            self.compressed_channels,
            lowpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor,
            self.encoder_kernel,
            padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
            dilation=self.encoder_dilation,
            groups=1)
        
        self.align_corners = align_corners
        self.upsample_mode = upsample_mode
        self.hr_residual = hr_residual
        self.use_high_pass = use_high_pass
        self.use_low_pass = use_low_pass
        self.semi_conv = semi_conv
        self.feature_resample = feature_resample
        self.comp_feat_upsample = comp_feat_upsample
        if self.feature_resample:
            self.dysampler = LocalSimGuidedSampler(in_channels=compressed_channels, scale=2, style='lp', groups=feature_resample_group, use_direct_scale=True, kernel_size=encoder_kernel, norm=feature_resample_norm)
        if self.use_high_pass:
            self.content_encoder2 = nn.Conv2d( # AHPF generator
                self.compressed_channels,
                highpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor,
                self.encoder_kernel,
                padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
                dilation=self.encoder_dilation,
                groups=1)
        self.hamming_window = hamming_window
        lowpass_pad=0
        highpass_pad=0
        if self.hamming_window:
            self.register_buffer('hamming_lowpass', torch.FloatTensor(hamming2D(lowpass_kernel + 2 * lowpass_pad, lowpass_kernel + 2 * lowpass_pad))[None, None,])
            self.register_buffer('hamming_highpass', torch.FloatTensor(hamming2D(highpass_kernel + 2 * highpass_pad, highpass_kernel + 2 * highpass_pad))[None, None,])
        else:
            self.register_buffer('hamming_lowpass', torch.FloatTensor([1.0]))
            self.register_buffer('hamming_highpass', torch.FloatTensor([1.0]))
        self.init_weights()

    def init_weights(self):
        for m in self.modules():
            # print(m)
            if isinstance(m, nn.Conv2d):
                xavier_init(m, distribution='uniform')
        normal_init(self.content_encoder, std=0.001)
        if self.use_high_pass:
            normal_init(self.content_encoder2, std=0.001)

    def kernel_normalizer(self, mask, kernel, scale_factor=None, hamming=1):
        if scale_factor is not None:
            mask = F.pixel_shuffle(mask, self.scale_factor)
        n, mask_c, h, w = mask.size()
        mask_channel = int(mask_c / float(kernel**2))
        # mask = mask.view(n, mask_channel, -1, h, w)
        # mask = F.softmax(mask, dim=2, dtype=mask.dtype)
        # mask = mask.view(n, mask_c, h, w).contiguous()

        mask = mask.view(n, mask_channel, -1, h, w)
        mask = F.softmax(mask, dim=2, dtype=mask.dtype)
        mask = mask.view(n, mask_channel, kernel, kernel, h, w)
        mask = mask.permute(0, 1, 4, 5, 2, 3).view(n, -1, kernel, kernel)
        # mask = F.pad(mask, pad=[padding] * 4, mode=self.padding_mode) # kernel + 2 * padding
        mask = mask * hamming
        mask /= mask.sum(dim=(-1, -2), keepdims=True)
        # print(hamming)
        # print(mask.shape)
        mask = mask.view(n, mask_channel, h, w, -1)
        mask =  mask.permute(0, 1, 4, 2, 3).view(n, -1, h, w).contiguous()
        return mask

    def forward(self, x, use_checkpoint=False):
        hr_feat, lr_feat = x
        if use_checkpoint:
            return checkpoint(self._forward, hr_feat, lr_feat)
        else:
            return self._forward(hr_feat, lr_feat)

    def _forward(self, hr_feat, lr_feat):
        compressed_hr_feat = self.hr_channel_compressor(hr_feat)
        compressed_lr_feat = self.lr_channel_compressor(lr_feat)
        if self.semi_conv:
            if self.comp_feat_upsample:
                if self.use_high_pass:
                    mask_hr_hr_feat = self.content_encoder2(compressed_hr_feat)
                    mask_hr_init = self.kernel_normalizer(mask_hr_hr_feat, self.highpass_kernel, hamming=self.hamming_highpass)
                    compressed_hr_feat = compressed_hr_feat + compressed_hr_feat - carafe(compressed_hr_feat, mask_hr_init.to(compressed_hr_feat.dtype), self.highpass_kernel, self.up_group, 1)
                    
                    mask_lr_hr_feat = self.content_encoder(compressed_hr_feat)
                    mask_lr_init = self.kernel_normalizer(mask_lr_hr_feat, self.lowpass_kernel, hamming=self.hamming_lowpass)
                    
                    mask_lr_lr_feat_lr = self.content_encoder(compressed_lr_feat)
                    mask_lr_lr_feat = F.interpolate(
                        carafe(mask_lr_lr_feat_lr, mask_lr_init.to(compressed_hr_feat.dtype), self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest')
                    mask_lr = mask_lr_hr_feat + mask_lr_lr_feat

                    mask_lr_init = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass)
                    mask_hr_lr_feat = F.interpolate(
                        carafe(self.content_encoder2(compressed_lr_feat), mask_lr_init.to(compressed_hr_feat.dtype), self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest')
                    mask_hr = mask_hr_hr_feat + mask_hr_lr_feat
                else: raise NotImplementedError
            else:
                mask_lr = self.content_encoder(compressed_hr_feat) + F.interpolate(self.content_encoder(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest')
                if self.use_high_pass:
                    mask_hr = self.content_encoder2(compressed_hr_feat) + F.interpolate(self.content_encoder2(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest')
        else:
            compressed_x = F.interpolate(compressed_lr_feat, size=compressed_hr_feat.shape[-2:], mode='nearest') + compressed_hr_feat
            mask_lr = self.content_encoder(compressed_x)
            if self.use_high_pass: 
                mask_hr = self.content_encoder2(compressed_x)
        
        mask_lr = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass)
        if self.semi_conv:
                lr_feat = carafe(lr_feat, mask_lr.to(compressed_hr_feat.dtype), self.lowpass_kernel, self.up_group, 2)
        else:
            lr_feat = resize(
                input=lr_feat,
                size=hr_feat.shape[2:],
                mode=self.upsample_mode,
                align_corners=None if self.upsample_mode == 'nearest' else self.align_corners)
            lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 1)

        if self.use_high_pass:
            mask_hr = self.kernel_normalizer(mask_hr, self.highpass_kernel, hamming=self.hamming_highpass)
            if self.hr_residual:
                # print('using hr_residual')
                hr_feat_hf = hr_feat - carafe(hr_feat, mask_hr.to(compressed_hr_feat.dtype), self.highpass_kernel, self.up_group, 1)
                hr_feat = hr_feat_hf + hr_feat
            else:
                hr_feat = hr_feat_hf

        if self.feature_resample:
            # print(lr_feat.shape)
            lr_feat = self.dysampler(hr_x=compressed_hr_feat, 
                                     lr_x=compressed_lr_feat, feat2sample=lr_feat)
                
        # return  mask_lr, hr_feat, lr_feat
        return hr_feat + lr_feat

class LocalSimGuidedSampler(nn.Module):
    """
    offset generator in FreqFusion
    """
    def __init__(self, in_channels, scale=2, style='lp', groups=4, use_direct_scale=True, kernel_size=1, local_window=3, sim_type='cos', norm=True, direction_feat='sim_concat'):
        super().__init__()
        assert scale==2
        assert style=='lp'

        self.scale = scale
        self.style = style
        self.groups = groups
        self.local_window = local_window
        self.sim_type = sim_type
        self.direction_feat = direction_feat

        if style == 'pl':
            assert in_channels >= scale ** 2 and in_channels % scale ** 2 == 0
        assert in_channels >= groups and in_channels % groups == 0

        if style == 'pl':
            in_channels = in_channels // scale ** 2
            out_channels = 2 * groups
        else:
            out_channels = 2 * groups * scale ** 2
        if self.direction_feat == 'sim':
            self.offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
        elif self.direction_feat == 'sim_concat':
            self.offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
        else: raise NotImplementedError
        normal_init(self.offset, std=0.001)
        if use_direct_scale:
            if self.direction_feat == 'sim':
                self.direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
            elif self.direction_feat == 'sim_concat':
                self.direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
            else: raise NotImplementedError
            constant_init(self.direct_scale, val=0.)

        out_channels = 2 * groups
        if self.direction_feat == 'sim':
            self.hr_offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
        elif self.direction_feat == 'sim_concat':
            self.hr_offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
        else: raise NotImplementedError
        normal_init(self.hr_offset, std=0.001)
        
        if use_direct_scale:
            if self.direction_feat == 'sim':
                self.hr_direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
            elif self.direction_feat == 'sim_concat':
                self.hr_direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
            else: raise NotImplementedError
            constant_init(self.hr_direct_scale, val=0.)

        self.norm = norm
        if self.norm:
            self.norm_hr = nn.GroupNorm(in_channels // 8, in_channels)
            self.norm_lr = nn.GroupNorm(in_channels // 8, in_channels)
        else:
            self.norm_hr = nn.Identity()
            self.norm_lr = nn.Identity()
        self.register_buffer('init_pos', self._init_pos())

    def _init_pos(self):
        h = torch.arange((-self.scale + 1) / 2, (self.scale - 1) / 2 + 1) / self.scale
        return torch.stack(torch.meshgrid([h, h])).transpose(1, 2).repeat(1, self.groups, 1).reshape(1, -1, 1, 1)
    
    def sample(self, x, offset, scale=None):
        if scale is None: scale = self.scale
        B, _, H, W = offset.shape
        offset = offset.view(B, 2, -1, H, W)
        coords_h = torch.arange(H) + 0.5
        coords_w = torch.arange(W) + 0.5
        coords = torch.stack(torch.meshgrid([coords_w, coords_h])
                             ).transpose(1, 2).unsqueeze(1).unsqueeze(0).type(x.dtype).to(x.device)
        normalizer = torch.tensor([W, H], dtype=x.dtype, device=x.device).view(1, 2, 1, 1, 1)
        coords = 2 * (coords + offset) / normalizer - 1
        coords = F.pixel_shuffle(coords.view(B, -1, H, W), scale).view(
            B, 2, -1, scale * H, scale * W).permute(0, 2, 3, 4, 1).contiguous().flatten(0, 1)
        return F.grid_sample(x.reshape(B * self.groups, -1, x.size(-2), x.size(-1)), coords, mode='bilinear',
                             align_corners=False, padding_mode="border").view(B, -1, scale * H, scale * W)
    
    def forward(self, hr_x, lr_x, feat2sample):
        hr_x = self.norm_hr(hr_x)
        lr_x = self.norm_lr(lr_x)

        if self.direction_feat == 'sim':
            hr_sim = compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')
            lr_sim = compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')
        elif self.direction_feat == 'sim_concat':
            hr_sim = torch.cat([hr_x, compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')], dim=1)
            lr_sim = torch.cat([lr_x, compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')], dim=1)
            hr_x, lr_x = hr_sim, lr_sim
        # offset = self.get_offset(hr_x, lr_x)
        offset = self.get_offset_lp(hr_x, lr_x, hr_sim, lr_sim)
        return self.sample(feat2sample, offset)
    
    # def get_offset_lp(self, hr_x, lr_x):
    def get_offset_lp(self, hr_x, lr_x, hr_sim, lr_sim):
        if hasattr(self, 'direct_scale'):
            # offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos
            offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos
            # offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_sim) + F.pixel_unshuffle(self.hr_direct_scale(hr_sim), self.scale)).sigmoid() + self.init_pos
        else:
            offset =  (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * 0.25 + self.init_pos
        return offset

    def get_offset(self, hr_x, lr_x):
        if self.style == 'pl':
            raise NotImplementedError
        return self.get_offset_lp(hr_x, lr_x)

def compute_similarity(input_tensor, k=3, dilation=1, sim='cos'):
    """
    计算输入张量中每一点与周围KxK范围内的点的余弦相似度。

    参数:
    - input_tensor: 输入张量,形状为[B, C, H, W]
    - k: 范围大小,表示周围KxK范围内的点

    返回:
    - 输出张量,形状为[B, KxK-1, H, W]
    """
    B, C, H, W = input_tensor.shape
    # 使用零填充来处理边界情况
    # padded_input = F.pad(input_tensor, (k // 2, k // 2, k // 2, k // 2), mode='constant', value=0)

    # 展平输入张量中每个点及其周围KxK范围内的点
    unfold_tensor = F.unfold(input_tensor, k, padding=(k // 2) * dilation, dilation=dilation) # B, CxKxK, HW
    # print(unfold_tensor.shape)
    unfold_tensor = unfold_tensor.reshape(B, C, k**2, H, W)

    # 计算余弦相似度
    if sim == 'cos':
        similarity = F.cosine_similarity(unfold_tensor[:, :, k * k // 2:k * k // 2 + 1], unfold_tensor[:, :, :], dim=1)
    elif sim == 'dot':
        similarity = unfold_tensor[:, :, k * k // 2:k * k // 2 + 1] * unfold_tensor[:, :, :]
        similarity = similarity.sum(dim=1)
    else:
        raise NotImplementedError

    # 移除中心点的余弦相似度,得到[KxK-1]的结果
    similarity = torch.cat((similarity[:, :k * k // 2], similarity[:, k * k // 2 + 1:]), dim=1)

    # 将结果重塑回[B, KxK-1, H, W]的形状
    similarity = similarity.view(B, k * k - 1, H, W)
    return similarity

四、添加步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 FreqFusion.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .FreqFusion import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

然后,在 parse_model函数 中添加如下代码:

elif m in {FreqFusion}:
    c2 = ch[f[0]]
    args = [[ch[x] for x in f], *args]

在这里插入图片描述


五、yaml模型文件

5.1 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-FreqFusion.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-FreqFusion.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 颈部网络 替换成 FreqFusion结构

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [3, 1, Conv, [256]] # 13-P3/8
  - [7, 1, Conv, [256]] # 14-P4/16
  - [12, 1, Conv, [256]] # 15-P5/32

  - [[14, -1], 1, FreqFusion, []] # cat backbone P4
  - [-1, 3, RepC3, [256]] # 17, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 18, Y4, lateral_convs.1

  - [[13, -1], 1, FreqFusion, []] # cat backbone P3
  - [-1, 3, RepC3, [256]] # X3 (20), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 21, downsample_convs.0
  - [[-1, 18], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (23), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 24, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (26), pan_blocks.1

  - [[20, 23, 26], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


六、成功运行结果

打印网络模型可以看到 SBA 已经加入到模型中,并可以进行训练了。

rtdetr-l-FreqFusion

rtdetr-l-FreqFusion summary: 688 layers, 32,717,063 parameters, 32,717,063 gradients

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256]                    
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256]                   
 15                  12  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256]                    
 16            [14, -1]  1     52514  ultralytics.nn.AddModules.FreqFusion.FreqFusion[[256, 256]]                  
 17                  -1  3   2101248  ultralytics.nn.modules.block.RepC3           [256, 256, 3]                 
 18                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 19            [13, -1]  1     52514  ultralytics.nn.AddModules.FreqFusion.FreqFusion[[256, 256]]                  
 20                  -1  3   2101248  ultralytics.nn.modules.block.RepC3           [256, 256, 3]                 
 21                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 22            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 23                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 24                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 25            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 26                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 27        [20, 23, 26]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-FreqFusion summary: 688 layers, 32,717,063 parameters, 32,717,063 gradients

测试的时候会正常打印计算量,所以在训练的时候不用管。