RT-DETR改进策略【模型轻量化】| GhostNetV2:利用远距离注意力增强廉价操作
一、本文介绍
本文记录的是
基于GhostNet V2的RT-DETR目标检测轻量化改进方法研究
。
在目前的研究中,基于轻量级卷积神经网络在建模长距离依赖方面的不足,引入自注意力机制虽能捕获全局信息,但在实际速度方面存在较大阻碍
。
GhostNet V2
提出了一种硬件友好的注意力机制(DFC attention),并基于此构建
GhostNet V2
。
本文利用其中的模块重新设计RT-DETR的骨干网络,使模型在降低模型大小的同时,赋予模型各阶段更大的感受野,提高模型性能。
| 模型 | 参数量 | 计算量 | 推理速度 |
|---|---|---|---|
| rtdetr-l | 32.8M | 108.0GFLOPs | 11.6ms |
| Improved | 22.3M | 63.5GFLOPs | 11.5ms |
二、GhostNet V2设计原理
GhostNet V2
是为移动应用设计的一种新的轻量级视觉骨干网络,其设计出发点、模型结构及优势如下:
2.1 设计出发点
- 基于轻量级卷积神经网络在建模长距离依赖方面的不足,引入自注意力机制虽能捕获全局信息,但在实际速度方面存在较大阻碍。
- 为解决这些问题,提出了一种硬件友好的注意力机制(DFC attention),并基于此构建GhostNet V2。
2.2 模型结构
-
增强Ghost模块
:
Ghost模块中只有一半的特征与其他像素交互,损害了其捕获空间信息的能力。因此,使用DFC attention来增强Ghost模块的输出特征Y,以捕获不同空间像素之间的长距离依赖。-
输入特征X被送入两个分支,一个是
Ghost模块产生输出特征Y,另一个是DFC模块生成注意力图A。 -
通过1×1卷积将模块的输入X转换为
DFC的输入Z。 - 模块的最终输出O是两个分支输出的乘积,即O = Sigmoid(A) ⊙ V(X)。
-
输入特征X被送入两个分支,一个是
-
特征下采样
:直接将DFC attention与Ghost模块并行会引入额外的计算成本,因此通过对特征进行水平和垂直下采样来减小特征的大小,使
DFC attention中的所有操作都在较小的特征上进行,然后再将特征图上采样到原始大小以匹配Ghost分支的特征大小。 -
GhostV2 bottleneck
:
GhostNet采用包含两个Ghost模块的倒置残差瓶颈结构,第一个模块产生具有更多通道的扩展特征,第二个模块减少通道数以获得输出特征。通过研究发现增强“表达能力”更有效,因此只将扩展特征与DFC attention相乘。DFC attention分支与第一个Ghost模块并行以增强扩展特征,然后增强的特征被发送到第二个Ghost模块以产生输出特征。
2.3 优势
-
性能提升
:在ImageNet数据集上,
GhostNet V2以更低的计算成本实现了比GhostNet V1更高的性能,例如,GhostNet V2以167M FLOPs实现了75.3%的top - 1准确率,显著优于GhostNet V1的74.5%。 -
下游任务有效性
:在对象检测和语义分割等下游任务中,捕获长距离依赖至关重要,
DFC attention可以有效地赋予Ghost模块更大的感受野,从而构建更强大和高效的模块。
论文: https://arxiv.org/abs/2211.12905
源码: https://github.com/huawei-noah/Efficient-AI-Backbones/tree/master/ghostnetv2_pytorch
三、GhostModuleV2模块的实现代码
GhostModuleV2模块
的实现代码如下:
# 2020.11.06-Changed for building GhostNetV2
# Huawei Technologies Co., Ltd. <foss@huawei.com>
"""
Creates a GhostNet Model as defined in:
GhostNet: More Features from Cheap Operations By Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu.
https://arxiv.org/abs/1911.11907
Modified from https://github.com/d-li14/mobilenetv3.pytorch and https://github.com/rwightman/pytorch-image-models
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from timm.models import register_model
def _make_divisible(v, divisor, min_value=None):
"""
This function is taken from the original tf repo.
It ensures that all layers have a channel number that is divisible by 8
It can be seen here:
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
"""
if min_value is None:
min_value = divisor
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_v < 0.9 * v:
new_v += divisor
return new_v
def hard_sigmoid(x, inplace: bool = False):
if inplace:
return x.add_(3.).clamp_(0., 6.).div_(6.)
else:
return F.relu6(x + 3.) / 6.
class SqueezeExcite(nn.Module):
def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
super(SqueezeExcite, self).__init__()
self.gate_fn = gate_fn
reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
self.act1 = act_layer(inplace=True)
self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
def forward(self, x):
x_se = self.avg_pool(x)
x_se = self.conv_reduce(x_se)
x_se = self.act1(x_se)
x_se = self.conv_expand(x_se)
x = x * self.gate_fn(x_se)
return x
class ConvBnAct(nn.Module):
def __init__(self, in_chs, out_chs, kernel_size,
stride=1, act_layer=nn.ReLU):
super(ConvBnAct, self).__init__()
self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size // 2, bias=False)
self.bn1 = nn.BatchNorm2d(out_chs)
self.act1 = act_layer(inplace=True)
def forward(self, x):
x = self.conv(x)
x = self.bn1(x)
x = self.act1(x)
return x
class GhostModuleV2(nn.Module):
def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True, mode=None, args=None):
super(GhostModuleV2, self).__init__()
self.mode = mode
self.gate_fn = nn.Sigmoid()
if self.mode in ['original']:
self.oup = oup
init_channels = math.ceil(oup / ratio)
new_channels = init_channels * (ratio - 1)
self.primary_conv = nn.Sequential(
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(init_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size // 2, groups=init_channels, bias=False),
nn.BatchNorm2d(new_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
elif self.mode in ['attn']:
self.oup = oup
init_channels = math.ceil(oup / ratio)
new_channels = init_channels * (ratio - 1)
self.primary_conv = nn.Sequential(
nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(init_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
self.cheap_operation = nn.Sequential(
nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size // 2, groups=init_channels, bias=False),
nn.BatchNorm2d(new_channels),
nn.ReLU(inplace=True) if relu else nn.Sequential(),
)
self.short_conv = nn.Sequential(
nn.Conv2d(inp, oup, kernel_size, stride, kernel_size // 2, bias=False),
nn.BatchNorm2d(oup),
nn.Conv2d(oup, oup, kernel_size=(1, 5), stride=1, padding=(0, 2), groups=oup, bias=False),
nn.BatchNorm2d(oup),
nn.Conv2d(oup, oup, kernel_size=(5, 1), stride=1, padding=(2, 0), groups=oup, bias=False),
nn.BatchNorm2d(oup),
)
def forward(self, x):
if self.mode in ['original']:
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1, x2], dim=1)
return out[:, :self.oup, :, :]
elif self.mode in ['attn']:
res = self.short_conv(F.avg_pool2d(x, kernel_size=2, stride=2))
x1 = self.primary_conv(x)
x2 = self.cheap_operation(x1)
out = torch.cat([x1, x2], dim=1)
return out[:, :self.oup, :, :] * F.interpolate(self.gate_fn(res), size=(out.shape[-2], out.shape[-1]),
mode='nearest')
class GhostBottleneckV2(nn.Module):
def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
stride=1, act_layer=nn.ReLU, se_ratio=0., layer_id=None, args=None):
super(GhostBottleneckV2, self).__init__()
has_se = se_ratio is not None and se_ratio > 0.
self.stride = stride
# Point-wise expansion
if layer_id <= 1:
self.ghost1 = GhostModuleV2(in_chs, mid_chs, relu=True, mode='original', args=args)
else:
self.ghost1 = GhostModuleV2(in_chs, mid_chs, relu=True, mode='attn', args=args)
# Depth-wise convolution
if self.stride > 1:
self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride,
padding=(dw_kernel_size - 1) // 2, groups=mid_chs, bias=False)
self.bn_dw = nn.BatchNorm2d(mid_chs)
# Squeeze-and-excitation
if has_se:
self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
else:
self.se = None
self.ghost2 = GhostModuleV2(mid_chs, out_chs, relu=False, mode='original', args=args)
# shortcut
if (in_chs == out_chs and self.stride == 1):
self.shortcut = nn.Sequential()
else:
self.shortcut = nn.Sequential(
nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
padding=(dw_kernel_size - 1) // 2, groups=in_chs, bias=False),
nn.BatchNorm2d(in_chs),
nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(out_chs),
)
def forward(self, x):
residual = x
x = self.ghost1(x)
if self.stride > 1:
x = self.conv_dw(x)
x = self.bn_dw(x)
if self.se is not None:
x = self.se(x)
x = self.ghost2(x)
x += self.shortcut(residual)
return x
class GhostNetV2(nn.Module):
def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2, block=GhostBottleneckV2, args=None):
super(GhostNetV2, self).__init__()
self.cfgs = cfgs
self.dropout = dropout
self.num_classes = num_classes
# building first layer
output_channel = _make_divisible(16 * width, 4)
self.conv_stem = nn.Conv2d(3, output_channel, 3, 2, 1, bias=False)
self.bn1 = nn.BatchNorm2d(output_channel)
self.act1 = nn.ReLU(inplace=True)
input_channel = output_channel
# building inverted residual blocks
stages = []
# block = block
layer_id = 0
for cfg in self.cfgs:
layers = []
for k, exp_size, c, se_ratio, s in cfg:
output_channel = _make_divisible(c * width, 4)
hidden_channel = _make_divisible(exp_size * width, 4)
if block == GhostBottleneckV2:
layers.append(block(input_channel, hidden_channel, output_channel, k, s,
se_ratio=se_ratio, layer_id=layer_id, args=args))
input_channel = output_channel
layer_id += 1
stages.append(nn.Sequential(*layers))
output_channel = _make_divisible(exp_size * width, 4)
stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1)))
input_channel = output_channel
self.blocks = nn.Sequential(*stages)
self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
def reset_classifier(self, num_classes, global_avg=''):
self.num_classes = num_classes
self.classifier = nn.Linear(1280, self.num_classes) if self.num_classes > 0 else nn.Identity()
def forward(self, x):
unique_tensors = {}
x = self.conv_stem(x)
x = self.bn1(x)
x = self.act1(x)
for model in self.blocks:
x = model(x)
if self.dropout > 0.:
x = F.dropout(x, p=self.dropout, training=self.training)
width, height = x.shape[2], x.shape[3]
unique_tensors[(width, height)] = x
result_list = list(unique_tensors.values())[-4:]
return result_list
@register_model
def Ghostnetv2(pretrained=False, pretrained_cfg=None, pretrained_cfg_overlay=None, **kwargs):
cfgs = [
# k, t, c, SE, s
[[3, 16, 16, 0, 1]],
[[3, 48, 24, 0, 2]],
[[3, 72, 24, 0, 1]],
[[5, 72, 40, 0.25, 2]],
[[5, 120, 40, 0.25, 1]],
[[3, 240, 80, 0, 2]],
[[3, 200, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 184, 80, 0, 1],
[3, 480, 112, 0.25, 1],
[3, 672, 112, 0.25, 1]
],
[[5, 672, 160, 0.25, 2]],
[[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1],
[5, 960, 160, 0, 1],
[5, 960, 160, 0.25, 1]
]
]
return GhostNetV2(cfgs)
if __name__=='__main__':
model = Ghostnetv2()
model.eval()
input = torch.randn(16,3,224,224)
y = model(input)
print(y.size())
四、修改步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
GhostNetV2.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .GhostNetV2 import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要添加各模块类。
① 首先:导入模块
② 在BaseModel类的predict函数中,在如下两处位置中去掉
embed
参数:
③ 在BaseModel类的_predict_once函数,替换如下代码:
def _predict_once(self, x, profile=False, visualize=False):
"""
Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True, defaults to False.
visualize (bool): Save the feature maps of the model if True, defaults to False.
Returns:
(torch.Tensor): The last output of the model.
"""
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
return x
④ 将
RTDETRDetectionModel类
中的
predict函数
完整替换:
def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
"""
Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
batch (dict, optional): Ground truth data for evaluation. Defaults to None.
augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
Returns:
(torch.Tensor): Model's output tensor.
"""
y, dt = [], [] # outputs
for m in self.model[:-1]: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if hasattr(m, 'backbone'):
x = m(x)
for _ in range(5 - len(x)):
x.insert(0, None)
for i_idx, i in enumerate(x):
if i_idx in self.save:
y.append(i)
else:
y.append(None)
# for i in x:
# if i is not None:
# print(i.size())
x = x[-1]
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
head = self.model[-1]
x = head([y[j] for j in head.f], batch) # head inference
return x
⑤ 在
parse_model函数
如下位置替换如下代码:
if verbose:
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
ch = [ch]
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
is_backbone = False
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
try:
if m == 'node_mode':
m = d[m]
if len(args) > 0:
if args[0] == 'head_channel':
args[0] = int(d[args[0]])
t = m
m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module
except:
pass
for j, a in enumerate(args):
if isinstance(a, str):
with contextlib.suppress(ValueError):
try:
args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
except:
args[j] = a
替换后如下:
⑥ 在
parse_model
函数,添加如下代码。
elif m in {
Ghostnetv2,
}:
m = m(*args)
c2 = m.width_list
⑦ 在
parse_model函数
如下位置替换如下代码:
if isinstance(c2, list):
is_backbone = True
m_ = m
m_.backbone = True
else:
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
m_.np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t # attach index, 'from' index, type
if verbose:
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m_.np:10.0f} {t:<45}{str(args):<30}') # print
save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
if isinstance(c2, list):
ch.extend(c2)
for _ in range(5 - len(ch)):
ch.insert(0, 0)
else:
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
⑧ 在
ultralytics\nn\autobackend.py
文件的
AutoBackend类
中的
forward函数
,完整替换如下代码:
def forward(self, im, augment=False, visualize=False):
"""
Runs inference on the YOLOv8 MultiBackend model.
Args:
im (torch.Tensor): The image tensor to perform inference on.
augment (bool): whether to perform data augmentation during inference, defaults to False
visualize (bool): whether to visualize the output predictions, defaults to False
Returns:
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
"""
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.pt or self.nn_module: # PyTorch
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
elif self.jit: # TorchScript
y = self.model(im)
elif self.dnn: # ONNX OpenCV DNN
im = im.cpu().numpy() # torch to numpy
self.net.setInput(im)
y = self.net.forward()
elif self.onnx: # ONNX Runtime
im = im.cpu().numpy() # torch to numpy
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
elif self.xml: # OpenVINO
im = im.cpu().numpy() # FP32
y = list(self.ov_compiled_model(im).values())
elif self.engine: # TensorRT
if self.dynamic and im.shape != self.bindings['images'].shape:
i = self.model.get_binding_index('images')
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
for name in self.output_names:
i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
s = self.bindings['images'].shape
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs['images'] = int(im.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
elif self.coreml: # CoreML
im = im[0].cpu().numpy()
im_pil = Image.fromarray((im * 255).astype('uint8'))
# im = im.resize((192, 320), Image.BILINEAR)
y = self.model.predict({'image': im_pil}) # coordinates are xywh normalized
if 'confidence' in y:
raise TypeError('Ultralytics only supports inference of non-pipelined CoreML models exported with '
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export.")
# TODO: CoreML NMS inference handling
# from ultralytics.utils.ops import xywh2xyxy
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
# conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
# y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
elif len(y) == 1: # classification model
y = list(y.values())
elif len(y) == 2: # segmentation model
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
elif self.paddle: # PaddlePaddle
im = im.cpu().numpy().astype(np.float32)
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
elif self.ncnn: # ncnn
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
ex = self.net.create_extractor()
input_names, output_names = self.net.input_names(), self.net.output_names()
ex.input(input_names[0], mat_in)
y = []
for output_name in output_names:
mat_out = self.pyncnn.Mat()
ex.extract(output_name, mat_out)
y.append(np.array(mat_out)[None])
elif self.triton: # NVIDIA Triton Inference Server
im = im.cpu().numpy() # torch to numpy
y = self.model(im)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = self.model(im, training=False) if self.keras else self.model(im)
if not isinstance(y, list):
y = [y]
elif self.pb: # GraphDef
y = self.frozen_func(x=self.tf.constant(im))
if len(y) == 2 and len(self.names) == 999: # segments and names not defined
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
self.names = {i: f'class{i}' for i in range(nc)}
else: # Lite or Edge TPU
details = self.input_details[0]
integer = details['dtype'] in (np.int8, np.int16) # is TFLite quantized int8 or int16 model
if integer:
scale, zero_point = details['quantization']
im = (im / scale + zero_point).astype(details['dtype']) # de-scale
self.interpreter.set_tensor(details['index'], im)
self.interpreter.invoke()
y = []
for output in self.output_details:
x = self.interpreter.get_tensor(output['index'])
if integer:
scale, zero_point = output['quantization']
x = (x.astype(np.float32) - zero_point) * scale # re-scale
if x.ndim > 2: # if task is not classification
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
# xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
x[:, [0, 2]] *= w
x[:, [1, 3]] *= h
y.append(x)
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
if len(y) == 2: # segment with (det, proto) output order reversed
if len(y[1].shape) != 4:
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
# for x in y:
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
if isinstance(y, (list, tuple)):
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
else:
return self.from_numpy(y)
至此就修改完成了,可以配置模型开始训练了
五、yaml模型文件
5.1 模型改进⭐
在代码配置完成后,配置模型的YAML文件。
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-GhostModuleV2.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-GhostModuleV2.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
替换成
Ghostnetv2
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, Ghostnetv2, []] # 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5 input_proj.2
- [-1, 1, AIFI, [1024, 8]] # 6
- [-1, 1, Conv, [256, 1, 1]] # 7, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.1
- [[-2, -1], 1, Concat, [1]] # 10
- [-1, 3, RepC3, [256]] # 11, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 12, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 15 cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # 18 cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # 21 cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
六、成功运行结果
分别打印网络模型可以看到
GhostModuleV2模块
已经加入到模型中,并可以进行训练了。
rtdetr-GhostModuleV2 :
rtdetr-Ghostnetv2 summary: 902 layers, 22,267,751 parameters, 22,267,751 gradients, 63.5 GFLOPs </font<
from n params module arguments
0 -1 1 3645828 Ghostnetv2 []
1 -1 1 246272 ultralytics.nn.modules.conv.Conv [960, 256, 1, 1, None, 1, 1, False]
2 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
3 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
4 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
5 3 1 29184 ultralytics.nn.modules.conv.Conv [112, 256, 1, 1, None, 1, 1, False]
6 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
7 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
8 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
10 2 1 10752 ultralytics.nn.modules.conv.Conv [40, 256, 1, 1, None, 1, 1, False]
11 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
13 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
14 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
16 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
17 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
19 [16, 19, 22] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-Ghostnetv2 summary: 902 layers, 22,267,751 parameters, 22,267,751 gradients, 63.5 GFLOPs