学习资源站

RT-DETR改进策略【注意力机制篇】SENetV2优化SE注意力机制,聚合通道和全局信息-

RT-DETR改进策略【注意力机制篇】| SENet V2 优化SE注意力机制,聚合通道和全局信息

一、本文介绍

本文记录的是 利用 SENet V2 模块 模块优化 RT-DETR 的目标检测网络模型 SENet V2 V1 的基础上引入 多分支密集层 ,同时包含了 通道信息和全局信息 ,克服了传统卷积神经网络在 全局表示学习不足 以及 V1 本身可优化空间的问题。本文将其加入到 RT-DETR 的不同位置中,并进行二次创新,充分发挥 SE V2 模块的性能。



二、SENet V2介绍

SENetV2: Aggregated dense layer for channelwise and global representations

1. 模块设计出发点

  • 现有技术的局限性
    • CNN的空间学习优势与全局学习不足 :卷积神经网络(CNNs)在学习局部感受野内的空间相关性方面表现出色,但在学习全局表示方面相对不足。例如在图像分类任务中,虽然能提取局部特征,但对于整体的图像类别特征把握可能不够全面。
    • SENet的改进空间 SENet 通过 挤压 激励 操作增强了通道表示,但仍有可优化之处。
  • 借鉴其他成功架构的思路
    • Inception模块的多分支卷积优势 Inception模块 采用多分支卷积,不同分支使用不同尺寸的滤波器,最后拼接,能在降低理论复杂度的同时提高性能。这种多分支结构启发了新模块设计,使其能够更好地学习不同尺度的特征。
    • ResNeXt的聚合模块思想 ResNeXt 引入了聚合残差模块和“基数”概念,减少了理论复杂度并提升了性能。这为新模块在结构设计和优化上提供了参考,以更好地整合信息和提高效率。

2. 原理

  • 通道信息的处理
    • 挤压操作(Squeeze) :输入经过卷积层后,进入全局平均池化层生成通道方向的输入,再进入具有缩减尺寸的全连接(FC)层进行挤压操作。该操作通过全连接层对通道信息进行重新整合和筛选,提取关键特征。
    • 激励操作(Excitation) :挤压后的信息进入激励组件,激励组件包含一个不进行缩减的FC层,恢复输入的原始形式,然后通过缩放操作与特征图进行通道方向的乘法,最后重新缩放恢复原始形状。这一步骤能够增强重要通道的信息,抑制不重要的通道信息。

在这里插入图片描述

  • 全局与局部信息的融合
    • 多分支密集层的引入 :在挤压操作中引入多分支密集层,将聚合层连接起来并传递给FC层。这种结构使得模块能够学习到更广泛的全局表示,同时与通道表示相结合,实现全局与局部信息的融合。
    • 核心特征与激励层的交互 :通过选择合适的基数(如4),使模块能够在不增加不必要复杂度和模型参数的情况下,让核心特征与激励层有效交互,更好地学习全局表示并保留高效的结构。

3. 结构

  • 与现有模块的对比
    • 聚合残差模块(ResNeXt) ResNeXt 聚合残差模块 通过 分支卷积 直接连接输入,数学公式为 R e s n e X t = x + ∑ F ( x ) Resne X t=x+\sum F(x) R es n e Xt = x + F ( x ) 。而新模块在此基础上进行了改进,更加注重通道信息的处理和全局表示的学习。
    • 挤压和激励模块(SENet) SENet 挤压 激励 操作公式为 S E n e t = x + F ( x ⋅ E x ( S q ( x ) ) ) S E n e t=x+F(x \cdot E x(S q(x))) SE n e t = x + F ( x E x ( Sq ( x ))) ,新模块在其基础上引入了多分支密集层和新的操作方式,如公式 S E n e t V 2 = x + F ( x ⋅ E x ( ∑ S q ( x ) ) ) S E n e t V 2=x+F\left(x \cdot E x\left(\sum S q(x)\right)\right) SE n e t V 2 = x + F ( x E x ( Sq ( x ) ) ) 所示。
  • 自身结构特点
    • 多分支FC层 :类似于ResNeXt的方法, 引入相同大小的多分支FC层 ,增加了层间的基数,优化了信息传递。
    • 分层处理流程 :包括 挤压层 在激励前传递关键特征,然后经过一系列操作恢复原始形式,最后将处理后的信息与输入在残差模块中连接,形成一个完整的分层处理流程。

在这里插入图片描述

ResNeXt, SENet和SENetV2模块之间的比较

4. 优势

  • 性能提升
    • 实验验证 :在CIFAR-10、CIFAR-100和定制版ImageNet等数据集上进行实验,与ResNet、SENet等现有架构相比,SENetV2在分类准确率上有显著提高。例如在CIFAR-10数据集上,Resnet准确率为77.38,SE Resnet为77.79,而SE ResnetV2达到了78.60。
    • 特征表示增强 :通过更好地融合通道表示和全局表示,增强了网络对图像特征的提取能力,从而提高了分类性能。
  • 复杂度控制
    • 参数增加可接受 :虽然模型参数相比SENet有少量增加,但增加幅度较小。例如在CIFAR-100数据集上,Resnet参数为23.62M,SE Resnet为24.90M,SE ResnetV2为28.67M,增加的参数换来的是性能的提升,在实际应用中是可接受的。
    • 结构优化 :通过合理选择基数和引入多分支结构,在不增加过多复杂度的情况下提升了性能,保持了模型结构的高效性。

论文: https://arxiv.org/pdf/2311.10807
源码: https://github.com/mahendran-narayanan/SENetV2-Aggregated-dense-layer-for-channelwise-and-global-representations

三、SE v2的实现代码

SE v2 及其改进的实现代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules.conv import LightConv
 
class SELayer(nn.Module):
    def __init__(self, channel, reduction=16):
        super(SELayer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.fc = nn.Sequential(
            nn.Linear(channel, channel // reduction, bias=False),
            nn.ReLU(inplace=True),
            nn.Linear(channel // reduction, channel, bias=False),
            nn.Sigmoid()
        )
 
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y = self.fc(y).view(b, c, 1, 1)
        return x * y.expand_as(x)

class SELayerV2(nn.Module):
    def __init__(self, in_channel, reduction=16):
        super(SELayerV2, self).__init__()
        assert in_channel >= reduction and in_channel % reduction == 0, 'invalid in_channel in SaElayer'
        self.reduction = reduction
        self.cardinality = 4
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        # cardinality 1
        self.fc1 = nn.Sequential(
            nn.Linear(in_channel, in_channel // self.reduction, bias=False),
            nn.ReLU(inplace=True)
        )
        # cardinality 2
        self.fc2 = nn.Sequential(
            nn.Linear(in_channel, in_channel // self.reduction, bias=False),
            nn.ReLU(inplace=True)
        )
        # cardinality 3
        self.fc3 = nn.Sequential(
            nn.Linear(in_channel, in_channel // self.reduction, bias=False),
            nn.ReLU(inplace=True)
        )
        # cardinality 4
        self.fc4 = nn.Sequential(
            nn.Linear(in_channel, in_channel // self.reduction, bias=False),
            nn.ReLU(inplace=True)
        )
 
        self.fc = nn.Sequential(
            nn.Linear(in_channel // self.reduction * self.cardinality, in_channel, bias=False),
            nn.Sigmoid()
        )
 
    def forward(self, x):
        b, c, _, _ = x.size()
        y = self.avg_pool(x).view(b, c)
        y1 = self.fc1(y)
        y2 = self.fc2(y)
        y3 = self.fc3(y)
        y4 = self.fc4(y)
        y_concate = torch.cat([y1, y2, y3, y4], dim=1)
        y_ex_dim = self.fc(y_concate).view(b, c, 1, 1)
 
        return x * y_ex_dim.expand_as(x)

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))
 
class HGBlock_SEV2(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = SELayerV2(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = SELayerV2(c2)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))

class ResNetLayer_SEV2(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)


四、创新模块

4.1 改进点1⭐

模块改进方法 :基于 SEv2模块 HGBlock 第五节讲解添加步骤 )。

SEv2模块 添加到 HGBlock 后如下:

class HGBlock_SEV2(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = SELayerV2(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 SEv2模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进,并将 SEv2 在加入到 ResNetLayer 模块中。

改进代码如下:

ResNetLayer 模块进行改进,加入 SEv2模块 ,重命名为 ResNetLayer_SEV2

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = Conv(c2, c3, k=1, act=False)
        self.cv4 = SELayerV2(c2)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv4(self.cv2(self.cv1(x)))) + self.shortcut(x))

class ResNetLayer_SEV2(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)
 

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: HGBlock_SEV2 ResNetLayer_SEV2


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 SEv2.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .SEv2 import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 HGBlock_SEV2 ResNetLayer_SEV2 模块

在这里插入图片描述

在这里插入图片描述

最后:在 parse_model函数 中添加如下代码:

elif m in {SELayerV2}:
    c2 = ch[f]
    args = [c2, *args]

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本1

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_SEV2.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_SEV2.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的 HGBlock 模块替换成 HGBlock_SEV2模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_SEV2, [192, 512, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_SEV2, [192, 512, 5, True, True]]
  - [-1, 6, HGBlock_SEV2, [192, 512, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_SEV2.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_SEV2.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 ResNetLayer模块 替换成 ResNetLayer_SEV2模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_LSKA, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_LSKA, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_LSKA, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_LSKA, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_LSKA, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 HGBlock_SEV2 ResNetLayer_SEV2 已经加入到模型中,并可以进行训练了。

rtdetr-l-HGBlock_SEV2

rtdetr-l-HGBlock_SEV2 summary: 1,081 layers, 50,854,723 parameters, 50,854,723 gradients, 158.3 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6  17411328  ultralytics.nn.AddModules.SEv2.HGBlock_SEV2  [512, 192, 512, 5, True, False]
  6                  -1  6   3286656  ultralytics.nn.AddModules.SEv2.HGBlock_SEV2  [512, 192, 512, 5, True, True]
  7                  -1  6   3286656  ultralytics.nn.AddModules.SEv2.HGBlock_SEV2  [512, 192, 512, 5, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_SEV2 summary: 1,081 layers, 50,854,723 parameters, 50,854,723 gradients, 158.3 GFLOPs

rtdetr-ResNetLayer_SEV2

rtdetr-ResNetLayer_SEV2 summary: 689 layers, 44,099,555 parameters, 44,099,555 gradients, 134.2 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.LSKA.ResNetLayer_LSKA[3, 64, 1, True, 1]           
  1                  -1  1    232128  ultralytics.nn.AddModules.LSKA.ResNetLayer_LSKA[64, 64, 1, False, 3]         
  2                  -1  1   1295872  ultralytics.nn.AddModules.LSKA.ResNetLayer_LSKA[256, 128, 2, False, 4]       
  3                  -1  1   7523840  ultralytics.nn.AddModules.LSKA.ResNetLayer_LSKA[512, 256, 2, False, 6]       
  4                  -1  1  15783424  ultralytics.nn.AddModules.LSKA.ResNetLayer_LSKA[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_SEV2 summary: 689 layers, 44,099,555 parameters, 44,099,555 gradients, 134.2 GFLOPs