RT-DETR改进策略【Backbone/主干网络】| CVPR 2024替换骨干网络为 UniRepLKNet,解决大核 ConvNets 难题
一、本文介绍
本文记录的是
基于UniRepLKNet的RT-DETR骨干网络改进方法研究
。
UniRepLKNet
提出了独特的
大核设计
能
有效捕捉图像特征
,在多模态任务中展现出强大的通用感知能力。将
UniRepLKNet
应用到
RT-DETR
的骨干网络中,提升
RT-DETR
在目标检测任务中的精度和效率 。
本文在
RT-DETR
的基础上配置了原论文中
unireplknet_a
,
unireplknet_f
,
unireplknet_p
,
unireplknet_n
,
unireplknet_t
,
unireplknet_s
,
unireplknet_b
,
unireplknet_l
,
unireplknet_xl
九种模型,以满足不同的需求。
二、UniRepLKNet原理介绍
UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition
UniRepLKNet
是一种
通用感知大核卷积神经网络
,其模型结构设计旨在解决现有大核卷积神经网络存在的问题,并探索卷积神经网络在多模态领域的通用感知能力。以下从设计出发点、结构原理和优势三方面进行详细介绍:
2.1 设计出发点
- 大核卷积神经网络架构设计不足 :现有大核卷积神经网络架构大多遵循传统卷积神经网络或Transformer的设计原则,缺乏针对大核特性的专门设计。例如,RepLKNet 遵循 Swin Transformer 的架构,SLaK 遵循 ConvNeXt 的架构,这种简单沿用其他模型架构的方式,没有充分挖掘大核卷积神经网络的潜力。
- 探索卷积神经网络在多模态领域的通用感知能力 :Transformer在多种模态中展现出通用感知能力,而卷积神经网络在视觉领域以外的通用感知能力有待研究。因此,研究希望探索大核卷积神经网络是否能在音频、视频、点云、时间序列等非视觉领域取得良好效果。
2.2 结构原理
-
架构准则
:提出四条架构准则。
- 准则一是使用如SE Block等高效结构增加深度,该结构能同时进行通道间通信和空间聚合,提升模型的表示能力 ;
- 准则二是使用扩张重参数化块(Dilated Reparam Block)对大核进行重参数化,通过并行的扩张小核卷积层增强大核捕捉稀疏模式的能力,且在推理时可将整个块等效转换为单个非扩张卷积层,避免额外推理成本。
- 准则三是根据下游任务决定内核大小,通常在中高级层使用大内核,不同阶段使用不同大小内核会影响模型性能,需根据具体任务和框架选择合适的内核大小。
- 准则四是在增加深度时,添加的块应使用小内核,通过实验表明,小内核在增加空间模式的抽象层次方面有重要作用,能在扩大感受野的同时提高模型性能。
- Dilated Reparam Block :该模块使用非扩张小核和多个扩张小核卷积层增强非扩张大核卷积层。在训练时,大核与并行的小核(包括扩张小核)卷积层同时工作,小核有助于捕捉小规模模式,扩张小核可增强大核捕捉稀疏模式的能力。训练后,通过结构重参数化方法,将批归一化(BN)层合并到卷积层中,并将扩张卷积层等效转换为非扩张的大核卷积层,以减少推理成本。
2.3 整体架构
- 由多个阶段组成,阶段之间通过下采样块(由步长为2的密集3×3卷积层实现)进行连接。
- 每个阶段包含了不同的块,如LarK Block(大核块)和SmaK Block(小核块)。
-
一个LarK Block由一个Dilated Reparam Block(扩张重参数块)、一个SE Block(挤压与激励块)、FFN(前馈神经网络)和BN(批归一化)层构成。
- Dilated Reparam Block的作用是通过使用非扩张的小核和多个扩张的小核层来增强非扩张大核卷积层,它利用了大核能够在不增加深度的情况下看到更宽范围的特点。其超参数包括大核的大小K、并行卷积层的大小k以及扩张率r,通过灵活设置这些参数,可以更好地捕捉不同尺度的特征。
- SE Block用于实现高效的结构,以增加深度,它通过全局平均池化和非线性映射来实现通道间的通信和空间聚合。
- 大核和小核的主要区别在于:SmaK Block使用深度可分离的3×3卷积层来替代LarK Block中的Dilated Reparam Block。
2.4 优势
- 图像识别性能领先 :在ImageNet分类、COCO对象检测和ADE20K语义分割等任务上,UniRepLKNet均取得领先性能,在精度和效率上优于RepLKNet、SLaK等现有大核卷积神经网络,以及ConvNeXt V2、FastViT、Swin V2和DeiT III等模型。
- 多模态通用感知能力出色 :在时间序列预测、音频识别、视频识别和点云分析等任务中,UniRepLKNet均取得了优异的成绩。
- 更高的形状偏差 :UniRepLKNet比现有卷积神经网络和Transformer具有更高的形状偏差,即其预测更多基于物体的整体形状而非纹理,这与人类视觉系统更相符,有助于模型在下游任务中表现更优。
论文: https://arxiv.org/abs/2311.15599
源码: https://github.com/AILab-CVC/UniRepLKNet
三、UniRepLKNet的实现代码
UniRepLKNet
的实现代码如下:
# UniRepLKNet: A Universal Perception Large-Kernel ConvNet for Audio, Video, Point Cloud, Time-Series and Image Recognition
# Github source: https://github.com/AILab-CVC/UniRepLKNet
# Licensed under The Apache License 2.0 License [see LICENSE for details]
# Based on RepLKNet, ConvNeXt, timm, DINO and DeiT code bases
# https://github.com/DingXiaoH/RepLKNet-pytorch
# https://github.com/facebookresearch/ConvNeXt
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.layers import trunc_normal_, DropPath, to_2tuple
from functools import partial
import torch.utils.checkpoint as checkpoint
import numpy as np
__all__ = ['unireplknet_a', 'unireplknet_f', 'unireplknet_p', 'unireplknet_n', 'unireplknet_t', 'unireplknet_s', 'unireplknet_b', 'unireplknet_l', 'unireplknet_xl']
class GRNwithNHWC(nn.Module):
""" GRN (Global Response Normalization) layer
Originally proposed in ConvNeXt V2 (https://arxiv.org/abs/2301.00808)
This implementation is more efficient than the original (https://github.com/facebookresearch/ConvNeXt-V2)
We assume the inputs to this layer are (N, H, W, C)
"""
def __init__(self, dim, use_bias=True):
super().__init__()
self.use_bias = use_bias
self.gamma = nn.Parameter(torch.zeros(1, 1, 1, dim))
if self.use_bias:
self.beta = nn.Parameter(torch.zeros(1, 1, 1, dim))
def forward(self, x):
Gx = torch.norm(x, p=2, dim=(1, 2), keepdim=True)
Nx = Gx / (Gx.mean(dim=-1, keepdim=True) + 1e-6)
if self.use_bias:
return (self.gamma * Nx + 1) * x + self.beta
else:
return (self.gamma * Nx + 1) * x
class NCHWtoNHWC(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 2, 3, 1)
class NHWCtoNCHW(nn.Module):
def __init__(self):
super().__init__()
def forward(self, x):
return x.permute(0, 3, 1, 2)
#================== This function decides which conv implementation (the native or iGEMM) to use
# Note that iGEMM large-kernel conv impl will be used if
# - you attempt to do so (attempt_to_use_large_impl=True), and
# - it has been installed (follow https://github.com/AILab-CVC/UniRepLKNet), and
# - the conv layer is depth-wise, stride = 1, non-dilated, kernel_size > 5, and padding == kernel_size // 2
def get_conv2d(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias,
attempt_use_lk_impl=True):
kernel_size = to_2tuple(kernel_size)
if padding is None:
padding = (kernel_size[0] // 2, kernel_size[1] // 2)
else:
padding = to_2tuple(padding)
need_large_impl = kernel_size[0] == kernel_size[1] and kernel_size[0] > 5 and padding == (kernel_size[0] // 2, kernel_size[1] // 2)
# if attempt_use_lk_impl and need_large_impl:
# print('---------------- trying to import iGEMM implementation for large-kernel conv')
# try:
# from depthwise_conv2d_implicit_gemm import DepthWiseConv2dImplicitGEMM
# print('---------------- found iGEMM implementation ')
# except:
# DepthWiseConv2dImplicitGEMM = None
# print('---------------- found no iGEMM. use original conv. follow https://github.com/AILab-CVC/UniRepLKNet to install it.')
# if DepthWiseConv2dImplicitGEMM is not None and need_large_impl and in_channels == out_channels \
# and out_channels == groups and stride == 1 and dilation == 1:
# print(f'===== iGEMM Efficient Conv Impl, channels {in_channels}, kernel size {kernel_size} =====')
# return DepthWiseConv2dImplicitGEMM(in_channels, kernel_size, bias=bias)
return nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size, stride=stride,
padding=padding, dilation=dilation, groups=groups, bias=bias)
def get_bn(dim, use_sync_bn=False):
if use_sync_bn:
return nn.SyncBatchNorm(dim)
else:
return nn.BatchNorm2d(dim)
class SEBlock(nn.Module):
"""
Squeeze-and-Excitation Block proposed in SENet (https://arxiv.org/abs/1709.01507)
We assume the inputs to this layer are (N, C, H, W)
"""
def __init__(self, input_channels, internal_neurons):
super(SEBlock, self).__init__()
self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons,
kernel_size=1, stride=1, bias=True)
self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels,
kernel_size=1, stride=1, bias=True)
self.input_channels = input_channels
self.nonlinear = nn.ReLU(inplace=True)
def forward(self, inputs):
x = F.adaptive_avg_pool2d(inputs, output_size=(1, 1))
x = self.down(x)
x = self.nonlinear(x)
x = self.up(x)
x = F.sigmoid(x)
return inputs * x.view(-1, self.input_channels, 1, 1)
def fuse_bn(conv, bn):
conv_bias = 0 if conv.bias is None else conv.bias
std = (bn.running_var + bn.eps).sqrt()
return conv.weight * (bn.weight / std).reshape(-1, 1, 1, 1), bn.bias + (conv_bias - bn.running_mean) * bn.weight / std
def convert_dilated_to_nondilated(kernel, dilate_rate):
identity_kernel = torch.ones((1, 1, 1, 1)).to(kernel.device)
if kernel.size(1) == 1:
# This is a DW kernel
dilated = F.conv_transpose2d(kernel, identity_kernel, stride=dilate_rate)
return dilated
else:
# This is a dense or group-wise (but not DW) kernel
slices = []
for i in range(kernel.size(1)):
dilated = F.conv_transpose2d(kernel[:,i:i+1,:,:], identity_kernel, stride=dilate_rate)
slices.append(dilated)
return torch.cat(slices, dim=1)
def merge_dilated_into_large_kernel(large_kernel, dilated_kernel, dilated_r):
large_k = large_kernel.size(2)
dilated_k = dilated_kernel.size(2)
equivalent_kernel_size = dilated_r * (dilated_k - 1) + 1
equivalent_kernel = convert_dilated_to_nondilated(dilated_kernel, dilated_r)
rows_to_pad = large_k // 2 - equivalent_kernel_size // 2
merged_kernel = large_kernel + F.pad(equivalent_kernel, [rows_to_pad] * 4)
return merged_kernel
class DilatedReparamBlock(nn.Module):
"""
Dilated Reparam Block proposed in UniRepLKNet (https://github.com/AILab-CVC/UniRepLKNet)
We assume the inputs to this block are (N, C, H, W)
"""
def __init__(self, channels, kernel_size, deploy, use_sync_bn=False, attempt_use_lk_impl=True):
super().__init__()
self.lk_origin = get_conv2d(channels, channels, kernel_size, stride=1,
padding=kernel_size//2, dilation=1, groups=channels, bias=deploy,
attempt_use_lk_impl=attempt_use_lk_impl)
self.attempt_use_lk_impl = attempt_use_lk_impl
# Default settings. We did not tune them carefully. Different settings may work better.
if kernel_size == 17:
self.kernel_sizes = [5, 9, 3, 3, 3]
self.dilates = [1, 2, 4, 5, 7]
elif kernel_size == 15:
self.kernel_sizes = [5, 7, 3, 3, 3]
self.dilates = [1, 2, 3, 5, 7]
elif kernel_size == 13:
self.kernel_sizes = [5, 7, 3, 3, 3]
self.dilates = [1, 2, 3, 4, 5]
elif kernel_size == 11:
self.kernel_sizes = [5, 5, 3, 3, 3]
self.dilates = [1, 2, 3, 4, 5]
elif kernel_size == 9:
self.kernel_sizes = [5, 5, 3, 3]
self.dilates = [1, 2, 3, 4]
elif kernel_size == 7:
self.kernel_sizes = [5, 3, 3]
self.dilates = [1, 2, 3]
elif kernel_size == 5:
self.kernel_sizes = [3, 3]
self.dilates = [1, 2]
else:
raise ValueError('Dilated Reparam Block requires kernel_size >= 5')
if not deploy:
self.origin_bn = get_bn(channels, use_sync_bn)
for k, r in zip(self.kernel_sizes, self.dilates):
self.__setattr__('dil_conv_k{}_{}'.format(k, r),
nn.Conv2d(in_channels=channels, out_channels=channels, kernel_size=k, stride=1,
padding=(r * (k - 1) + 1) // 2, dilation=r, groups=channels,
bias=False))
self.__setattr__('dil_bn_k{}_{}'.format(k, r), get_bn(channels, use_sync_bn=use_sync_bn))
def forward(self, x):
if not hasattr(self, 'origin_bn'): # deploy mode
return self.lk_origin(x)
out = self.origin_bn(self.lk_origin(x))
for k, r in zip(self.kernel_sizes, self.dilates):
conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
out = out + bn(conv(x))
return out
def merge_dilated_branches(self):
if hasattr(self, 'origin_bn'):
origin_k, origin_b = fuse_bn(self.lk_origin, self.origin_bn)
for k, r in zip(self.kernel_sizes, self.dilates):
conv = self.__getattr__('dil_conv_k{}_{}'.format(k, r))
bn = self.__getattr__('dil_bn_k{}_{}'.format(k, r))
branch_k, branch_b = fuse_bn(conv, bn)
origin_k = merge_dilated_into_large_kernel(origin_k, branch_k, r)
origin_b += branch_b
merged_conv = get_conv2d(origin_k.size(0), origin_k.size(0), origin_k.size(2), stride=1,
padding=origin_k.size(2)//2, dilation=1, groups=origin_k.size(0), bias=True,
attempt_use_lk_impl=self.attempt_use_lk_impl)
merged_conv.weight.data = origin_k
merged_conv.bias.data = origin_b
self.lk_origin = merged_conv
self.__delattr__('origin_bn')
for k, r in zip(self.kernel_sizes, self.dilates):
self.__delattr__('dil_conv_k{}_{}'.format(k, r))
self.__delattr__('dil_bn_k{}_{}'.format(k, r))
class UniRepLKNetBlock(nn.Module):
def __init__(self,
dim,
kernel_size,
drop_path=0.,
layer_scale_init_value=1e-6,
deploy=False,
attempt_use_lk_impl=True,
with_cp=False,
use_sync_bn=False,
ffn_factor=4):
super().__init__()
self.with_cp = with_cp
# if deploy:
# print('------------------------------- Note: deploy mode')
# if self.with_cp:
# print('****** note with_cp = True, reduce memory consumption but may slow down training ******')
self.need_contiguous = (not deploy) or kernel_size >= 7
if kernel_size == 0:
self.dwconv = nn.Identity()
self.norm = nn.Identity()
elif deploy:
self.dwconv = get_conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
dilation=1, groups=dim, bias=True,
attempt_use_lk_impl=attempt_use_lk_impl)
self.norm = nn.Identity()
elif kernel_size >= 7:
self.dwconv = DilatedReparamBlock(dim, kernel_size, deploy=deploy,
use_sync_bn=use_sync_bn,
attempt_use_lk_impl=attempt_use_lk_impl)
self.norm = get_bn(dim, use_sync_bn=use_sync_bn)
elif kernel_size == 1:
self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
dilation=1, groups=1, bias=deploy)
self.norm = get_bn(dim, use_sync_bn=use_sync_bn)
else:
assert kernel_size in [3, 5]
self.dwconv = nn.Conv2d(dim, dim, kernel_size=kernel_size, stride=1, padding=kernel_size // 2,
dilation=1, groups=dim, bias=deploy)
self.norm = get_bn(dim, use_sync_bn=use_sync_bn)
self.se = SEBlock(dim, dim // 4)
ffn_dim = int(ffn_factor * dim)
self.pwconv1 = nn.Sequential(
NCHWtoNHWC(),
nn.Linear(dim, ffn_dim))
self.act = nn.Sequential(
nn.GELU(),
GRNwithNHWC(ffn_dim, use_bias=not deploy))
if deploy:
self.pwconv2 = nn.Sequential(
nn.Linear(ffn_dim, dim),
NHWCtoNCHW())
else:
self.pwconv2 = nn.Sequential(
nn.Linear(ffn_dim, dim, bias=False),
NHWCtoNCHW(),
get_bn(dim, use_sync_bn=use_sync_bn))
self.gamma = nn.Parameter(layer_scale_init_value * torch.ones(dim),
requires_grad=True) if (not deploy) and layer_scale_init_value is not None \
and layer_scale_init_value > 0 else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, inputs):
def _f(x):
if self.need_contiguous:
x = x.contiguous()
y = self.se(self.norm(self.dwconv(x)))
y = self.pwconv2(self.act(self.pwconv1(y)))
if self.gamma is not None:
y = self.gamma.view(1, -1, 1, 1) * y
return self.drop_path(y) + x
if self.with_cp and inputs.requires_grad:
return checkpoint.checkpoint(_f, inputs)
else:
return _f(inputs)
def reparameterize(self):
if hasattr(self.dwconv, 'merge_dilated_branches'):
self.dwconv.merge_dilated_branches()
if hasattr(self.norm, 'running_var') and hasattr(self.dwconv, 'lk_origin'):
std = (self.norm.running_var + self.norm.eps).sqrt()
self.dwconv.lk_origin.weight.data *= (self.norm.weight / std).view(-1, 1, 1, 1)
self.dwconv.lk_origin.bias.data = self.norm.bias + (self.dwconv.lk_origin.bias - self.norm.running_mean) * self.norm.weight / std
self.norm = nn.Identity()
if self.gamma is not None:
final_scale = self.gamma.data
self.gamma = None
else:
final_scale = 1
if self.act[1].use_bias and len(self.pwconv2) == 3:
grn_bias = self.act[1].beta.data
self.act[1].__delattr__('beta')
self.act[1].use_bias = False
linear = self.pwconv2[0]
grn_bias_projected_bias = (linear.weight.data @ grn_bias.view(-1, 1)).squeeze()
bn = self.pwconv2[2]
std = (bn.running_var + bn.eps).sqrt()
new_linear = nn.Linear(linear.in_features, linear.out_features, bias=True)
new_linear.weight.data = linear.weight * (bn.weight / std * final_scale).view(-1, 1)
linear_bias = 0 if linear.bias is None else linear.bias.data
linear_bias += grn_bias_projected_bias
new_linear.bias.data = (bn.bias + (linear_bias - bn.running_mean) * bn.weight / std) * final_scale
self.pwconv2 = nn.Sequential(new_linear, self.pwconv2[1])
default_UniRepLKNet_A_F_P_kernel_sizes = ((3, 3),
(13, 13),
(13, 13, 13, 13, 13, 13),
(13, 13))
default_UniRepLKNet_N_kernel_sizes = ((3, 3),
(13, 13),
(13, 13, 13, 13, 13, 13, 13, 13),
(13, 13))
default_UniRepLKNet_T_kernel_sizes = ((3, 3, 3),
(13, 13, 13),
(13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3, 13, 3),
(13, 13, 13))
default_UniRepLKNet_S_B_L_XL_kernel_sizes = ((3, 3, 3),
(13, 13, 13),
(13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3, 13, 3, 3),
(13, 13, 13))
UniRepLKNet_A_F_P_depths = (2, 2, 6, 2)
UniRepLKNet_N_depths = (2, 2, 8, 2)
UniRepLKNet_T_depths = (3, 3, 18, 3)
UniRepLKNet_S_B_L_XL_depths = (3, 3, 27, 3)
default_depths_to_kernel_sizes = {
UniRepLKNet_A_F_P_depths: default_UniRepLKNet_A_F_P_kernel_sizes,
UniRepLKNet_N_depths: default_UniRepLKNet_N_kernel_sizes,
UniRepLKNet_T_depths: default_UniRepLKNet_T_kernel_sizes,
UniRepLKNet_S_B_L_XL_depths: default_UniRepLKNet_S_B_L_XL_kernel_sizes
}
class UniRepLKNet(nn.Module):
r""" UniRepLKNet
A PyTorch impl of UniRepLKNet
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 27, 3)
dims (int): Feature dimension at each stage. Default: (96, 192, 384, 768)
drop_path_rate (float): Stochastic depth rate. Default: 0.
layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
head_init_scale (float): Init scaling value for classifier weights and biases. Default: 1.
kernel_sizes (tuple(tuple(int))): Kernel size for each block. None means using the default settings. Default: None.
deploy (bool): deploy = True means using the inference structure. Default: False
with_cp (bool): with_cp = True means using torch.utils.checkpoint to save GPU memory. Default: False
init_cfg (dict): weights to load. The easiest way to use UniRepLKNet with for OpenMMLab family. Default: None
attempt_use_lk_impl (bool): try to load the efficient iGEMM large-kernel impl. Setting it to False disabling the iGEMM impl. Default: True
use_sync_bn (bool): use_sync_bn = True means using sync BN. Use it if your batch size is small. Default: False
"""
def __init__(self,
in_chans=3,
num_classes=1000,
depths=(3, 3, 27, 3),
dims=(96, 192, 384, 768),
drop_path_rate=0.,
layer_scale_init_value=1e-6,
head_init_scale=1.,
kernel_sizes=None,
deploy=False,
with_cp=False,
init_cfg=None,
attempt_use_lk_impl=True,
use_sync_bn=False,
**kwargs
):
super().__init__()
depths = tuple(depths)
if kernel_sizes is None:
if depths in default_depths_to_kernel_sizes:
# print('=========== use default kernel size ')
kernel_sizes = default_depths_to_kernel_sizes[depths]
else:
raise ValueError('no default kernel size settings for the given depths, '
'please specify kernel sizes for each block, e.g., '
'((3, 3), (13, 13), (13, 13, 13, 13, 13, 13), (13, 13))')
# print(kernel_sizes)
for i in range(4):
assert len(kernel_sizes[i]) == depths[i], 'kernel sizes do not match the depths'
self.with_cp = with_cp
dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]
# print('=========== drop path rates: ', dp_rates)
self.downsample_layers = nn.ModuleList()
self.downsample_layers.append(nn.Sequential(
nn.Conv2d(in_chans, dims[0] // 2, kernel_size=3, stride=2, padding=1),
LayerNorm(dims[0] // 2, eps=1e-6, data_format="channels_first"),
nn.GELU(),
nn.Conv2d(dims[0] // 2, dims[0], kernel_size=3, stride=2, padding=1),
LayerNorm(dims[0], eps=1e-6, data_format="channels_first")))
for i in range(3):
self.downsample_layers.append(nn.Sequential(
nn.Conv2d(dims[i], dims[i + 1], kernel_size=3, stride=2, padding=1),
LayerNorm(dims[i + 1], eps=1e-6, data_format="channels_first")))
self.stages = nn.ModuleList()
cur = 0
for i in range(4):
main_stage = nn.Sequential(
*[UniRepLKNetBlock(dim=dims[i], kernel_size=kernel_sizes[i][j], drop_path=dp_rates[cur + j],
layer_scale_init_value=layer_scale_init_value, deploy=deploy,
attempt_use_lk_impl=attempt_use_lk_impl,
with_cp=with_cp, use_sync_bn=use_sync_bn) for j in
range(depths[i])])
self.stages.append(main_stage)
cur += depths[i]
self.output_mode = 'features'
norm_layer = partial(LayerNorm, eps=1e-6, data_format="channels_first")
for i_layer in range(4):
layer = norm_layer(dims[i_layer])
layer_name = f'norm{i_layer}'
self.add_module(layer_name, layer)
self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if hasattr(m, 'bias') and m.bias is not None:
nn.init.constant_(m.bias, 0)
def forward(self, x):
if self.output_mode == 'logits':
for stage_idx in range(4):
x = self.downsample_layers[stage_idx](x)
x = self.stages[stage_idx](x)
x = self.norm(x.mean([-2, -1]))
x = self.head(x)
return x
elif self.output_mode == 'features':
outs = []
for stage_idx in range(4):
x = self.downsample_layers[stage_idx](x)
x = self.stages[stage_idx](x)
outs.append(self.__getattr__(f'norm{stage_idx}')(x))
return outs
else:
raise ValueError('Defined new output mode?')
def switch_to_deploy(self):
for m in self.modules():
if hasattr(m, 'reparameterize'):
m.reparameterize()
class LayerNorm(nn.Module):
r""" LayerNorm implementation used in ConvNeXt
LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", reshape_last_to_first=False):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape,)
self.reshape_last_to_first = reshape_last_to_first
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
def update_weight(model_dict, weight_dict):
idx, temp_dict = 0, {}
for k, v in weight_dict.items():
if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
temp_dict[k] = v
idx += 1
model_dict.update(temp_dict)
print(f'loading weights... {idx}/{len(model_dict)} items')
return model_dict
def unireplknet_a(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(40, 80, 160, 320), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
def unireplknet_f(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(48, 96, 192, 384), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
def unireplknet_p(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_A_F_P_depths, dims=(64, 128, 256, 512), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
def unireplknet_n(weights='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_N_depths, dims=(80, 160, 320, 640), **kwargs)
if weights:
model.load_state_dict(update_weight(model.state_dict(), torch.load(weights)))
return model
def unireplknet_t(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_T_depths, dims=(80, 160, 320, 640), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
def unireplknet_s(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(96, 192, 384, 768), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
def unireplknet_b(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(128, 256, 512, 1024), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
def unireplknet_l(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(192, 384, 768, 1536), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
def unireplknet_xl(pretrained='', **kwargs):
model = UniRepLKNet(depths=UniRepLKNet_S_B_L_XL_depths, dims=(256, 512, 1024, 2048), **kwargs)
if pretrained:
model.load_state_dict(update_weight(model.state_dict(), torch.load(pretrained)))
return model
四、修改步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
UniRepLKNet.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .UniRepLKNet import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
① 首先:导入模块
② 其次:在
parse_model函数
的如下位置添加两行代码:
backbone = False
t=m
③ 接着,在此函数下添加如下代码:
elif m in {unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,}:
m = m(*args)
c2 = m.width_list
backbone = True
④ 然后,将下方红框内的代码全部替换:
if isinstance(c2, list):
is_backbone = True
m_ = m
m_.backbone = True
else:
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
m.np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t # attach index, 'from' index, type
if verbose:
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if
x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
if isinstance(c2, list):
ch.extend(c2)
for _ in range(5 - len(ch)):
ch.insert(0, 0)
else:
ch.append(c2)
替换后如下:
⑤ 在此文件下找到
base_model
的
_predict_once
,并将其替换成如下代码。
def _predict_once(self, x, profile=False, visualize=False, embed=None):
y, dt, embeddings = [], [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if hasattr(m, 'backbone'):
x = m(x)
if len(x) != 5: # 0 - 5
x.insert(0, None)
for index, i in enumerate(x):
if index in self.save:
y.append(i)
else:
y.append(None)
x = x[-1] # 最后一个输出传给下一层
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
if embed and m.i in embed:
embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
if m.i == max(embed):
return torch.unbind(torch.cat(embeddings, 1), dim=0)
return x
至此就修改完成了,可以配置模型开始训练了
五、yaml模型文件
5.1 模型改进⭐
在代码配置完成后,配置模型的YAML文件。
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-UniRepLKNet.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-UniRepLKNet.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
替换成
unireplknet_a
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, unireplknet_a, []] # 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5 input_proj.2
- [-1, 1, AIFI, [1024, 8]] # 6
- [-1, 1, Conv, [256, 1, 1]] # 7, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.1
- [[-2, -1], 1, Concat, [1]] # 10
- [-1, 3, RepC3, [256]] # 11, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 12, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 15 cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # 18 cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # 21 cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
六、成功运行结果
分别打印网络模型可以看到
UniRepLKNet
已经加入到模型中,并可以进行训练了。
rtdetr-l-UniRepLKNet :
rtdetr-l-UniRepLKNet summary: 732 layers, 22,809,231 parameters, 22,809,231 gradients, 71.8 GFLOPs
from n params module arguments
0 -1 1 4328620 unireplknet_a []
1 -1 1 82432 ultralytics.nn.modules.conv.Conv [320, 256, 1, 1, None, 1, 1, False]
2 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
3 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
4 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
5 3 1 41472 ultralytics.nn.modules.conv.Conv [160, 256, 1, 1, None, 1, 1, False]
6 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
7 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
8 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
10 2 1 20992 ultralytics.nn.modules.conv.Conv [80, 256, 1, 1, None, 1, 1, False]
11 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
13 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
14 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
16 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
17 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
19 [16, 19, 22] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-UniRepLKNet summary: 732 layers, 22,809,231 parameters, 22,809,231 gradients, 71.8 GFLOPs