学习资源站

RT-DETR改进策略【Conv和Transformer】ICCV-2023iRMB倒置残差移动块轻量化的注意力模块-

RT-DETR改进策略【Conv和Transformer】| ICCV-2023 iRMB 倒置残差移动块 轻量化的注意力模块

一、本文介绍

本文记录的是 利用 iRMB 模块优化 RT-DETR 的目标检测网络模型 iRMB(Inverted Residual Mobile Block) 的作用在于 克服了常见模块无法同时吸收CNN 效率建模局部特征和利用Transformer 动态建模能力学习长距离交互的问题 。相比一些复杂结构或多个混合模块的方法,能更好地权衡模型成本和精度。本文将其用于 RT-DETR 的模型改进和二次创新,更好地突出重要特征,提升模型性能。



二、iRMB注意力介绍

Rethinking Mobile Block for Efficient Attention-based Models

2.1 设计出发点

  • 统一CNN和Transformer优势 :从高效的Inverted Residual Block(IRB)和Transformer的有效组件出发,期望在基础设施设计层面整合两者优势,为注意力模型构建类似IRB的轻量级基础结构。
  • 解决现有模型问题 :当前方法存在引入复杂结构或多个混合模块的问题,不利于应用优化。希望通过重新思考IRB和Transformer组件,构建简单有效的模块。

2.2 原理

  • 基于Meta Mobile Block(MMB) MMB 是通过对 MobileNetv2 中的 IRB Transformer 中的核心 MHSA FFN模块 重新思考并归纳抽象得到的。它以参数化的扩展比率 λ 和高效算子 F 来实例化不同模块(如IRB、MHSA、FFN),揭示了这些模块的一致本质表达。

在这里插入图片描述

  • 遵循通用高效模型准则 :设计遵循可用性(简单实现,不使用复杂算子,易于应用优化)、均匀性(核心模块少,降低模型复杂度,加速部署)、有效性(分类和密集预测性能好)、效率(参数和计算少,权衡精度)的准则。

2.3 结构

2.3.1 主要组成部分

从微观角度看, iRMB Depth - Wise Convolution(DW - Conv) 改进的Expanded Window MHSA(EW - MHSA) 组成。

2.3.2 具体操作流程

  • 首先,类似MMB的操作,使用 扩展MLP M L P e MLP_{e} M L P e )以输出/输入比等于λ来扩展通道维度,即 X e = M L P e ( X ) ( ∈ R λ C × H × W ) X_{e}=MLP_{e}(X)\left(\in \mathbb{R}^{\lambda C × H × W}\right) X e = M L P e ( X ) ( R λ C × H × W )
  • 然后,中间算子 F 进一步增强图像特征,这里F被建模为 级联的MHSA 卷积 操作,即 F ( ⋅ ) = C o n v ( M H S A ( ⋅ ) ) F(\cdot)=Conv(MHSA(\cdot)) F ( ) = C o n v ( M H S A ( )) ,具体采用DW - Conv和EW - MHSA的组合,其中EW - MHSA计算注意力矩阵的方式为 Q = K = X ( ∈ R C × H × W ) Q = K = X(\in \mathbb{R}^{C ×H ×W}) Q = K = X ( R C × H × W ) ,而扩展值 x e x_{e} x e 用于 V ( ∈ R λ C × H × W ) V(\in \mathbb{R}^{\lambda C ×H ×W}) V ( R λ C × H × W )
  • 最后,使用收缩 M L P MLP M L P M L P s MLP_{s} M L P s )以倒置的输入/输出比等于 λ 来收缩通道维度,即 X s = M L P s ( X f ) ( ∈ R C × H × W ) X_{s}=MLP_{s}\left(X_{f}\right)\left(\in \mathbb{R}^{C × H × W}\right) X s = M L P s ( X f ) ( R C × H × W ) ,并通过 残差连接 得到最终输出 Y = X + X s ( ∈ R C × H × W ) Y = X + X_{s}(\in \mathbb{R}^{C ×H ×W}) Y = X + X s ( R C × H × W )

在这里插入图片描述

2.4 优势

  • 吸收CNN和Transformer优点 :既能吸收 CNN 的效率来 建模局部特征 ,又能利用 Transformer 动态建模能力学习长距离交互
  • 降低模型成本
    • 通过采用高效的 Window - MHSA(WMHSA) Depth - Wise Convolution(DW - Conv) 并带有 跳跃连接 ,权衡了模型成本和精度。
    • 设计灵活性高,如不同深度可采用不同设置,满足性能需求的同时保持结构简洁。
  • 性能优势
    • 在ImageNet - 1K数据集上进行图像分类实验, iRMB 替换标准 Transformer 结构后,在相同训练设置下能以更少的参数和计算提高性能。
    • 在下游任务(如目标检测和语义分割)中,基于 iRMB 构建的 EMO模型 在多个基准测试中取得了非常有竞争力的结果,超过了当前的SoTA方法。

论文: https://arxiv.org/pdf/2301.01146.pdf
源码: https://github.com/zhangzjn/EMO

三、iRMB的实现代码

iRMB 及其改进的实现代码如下:

import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from einops import rearrange
from timm.models._efficientnet_blocks import SqueezeExcite
from timm.models.layers import DropPath

from ultralytics.nn.modules.conv import LightConv

inplace = True  
 
class LayerNorm2d(nn.Module):
 
    def __init__(self, normalized_shape, eps=1e-6, elementwise_affine=True):
        super().__init__()
        self.norm = nn.LayerNorm(normalized_shape, eps, elementwise_affine)
 
    def forward(self, x):
        x = rearrange(x, 'b c h w -> b h w c').contiguous()
        x = self.norm(x)
        x = rearrange(x, 'b h w c -> b c h w').contiguous()
        return x

def get_norm(norm_layer='in_1d'):
    eps = 1e-6
    norm_dict = {
        'none': nn.Identity,
        'in_1d': partial(nn.InstanceNorm1d, eps=eps),
        'in_2d': partial(nn.InstanceNorm2d, eps=eps),
        'in_3d': partial(nn.InstanceNorm3d, eps=eps),
        'bn_1d': partial(nn.BatchNorm1d, eps=eps),
        'bn_2d': partial(nn.BatchNorm2d, eps=eps),
        # 'bn_2d': partial(nn.SyncBatchNorm, eps=eps),
        'bn_3d': partial(nn.BatchNorm3d, eps=eps),
        'gn': partial(nn.GroupNorm, eps=eps),
        'ln_1d': partial(nn.LayerNorm, eps=eps),
        'ln_2d': partial(LayerNorm2d, eps=eps),
    }
    return norm_dict[norm_layer]

def get_act(act_layer='relu'):
    act_dict = {
        'none': nn.Identity,
        'relu': nn.ReLU,
        'relu6': nn.ReLU6,
        'silu': nn.SiLU
    }
    return act_dict[act_layer]

class ConvNormAct(nn.Module):
 
    def __init__(self, dim_in, dim_out, kernel_size, stride=1, dilation=1, groups=1, bias=False,
                 skip=False, norm_layer='bn_2d', act_layer='relu', inplace=True, drop_path_rate=0.):
        super(ConvNormAct, self).__init__()
        self.has_skip = skip and dim_in == dim_out
        padding = math.ceil((kernel_size - stride) / 2)
        self.conv = nn.Conv2d(dim_in, dim_out, kernel_size, stride, padding, dilation, groups, bias)
        self.norm = get_norm(norm_layer)(dim_out)
        self.act = get_act(act_layer)(inplace=inplace)
        self.drop_path = DropPath(drop_path_rate) if drop_path_rate else nn.Identity()
 
    def forward(self, x):
        shortcut = x
        x = self.conv(x)
        x = self.norm(x)
        x = self.act(x)
        if self.has_skip:
            x = self.drop_path(x) + shortcut
        return x

class iRMB(nn.Module):
 
    def __init__(self, dim_in,  norm_in=True, has_skip=True, exp_ratio=1.0, norm_layer='bn_2d',
                 act_layer='relu', v_proj=True, dw_ks=3, stride=1, dilation=1, se_ratio=0.0, dim_head=8, window_size=7,
                 attn_s=True, qkv_bias=False, attn_drop=0., drop=0., drop_path=0., v_group=False, attn_pre=False):
        super().__init__()
        dim_out = dim_in
        self.norm = get_norm(norm_layer)(dim_in) if norm_in else nn.Identity()
        dim_mid = int(dim_in * exp_ratio)
        self.has_skip = (dim_in == dim_out and stride == 1) and has_skip
        self.attn_s = attn_s
        if self.attn_s:
            assert dim_in % dim_head == 0, 'dim should be divisible by num_heads'
            self.dim_head = dim_head
            self.window_size = window_size
            self.num_head = dim_in // dim_head
            self.scale = self.dim_head ** -0.5
            self.attn_pre = attn_pre
            self.qk = ConvNormAct(dim_in, int(dim_in * 2), kernel_size=1, bias=qkv_bias, norm_layer='none',
                                  act_layer='none')
            self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, groups=self.num_head if v_group else 1, bias=qkv_bias,
                                 norm_layer='none', act_layer=act_layer, inplace=inplace)
            self.attn_drop = nn.Dropout(attn_drop)
        else:
            if v_proj:
                self.v = ConvNormAct(dim_in, dim_mid, kernel_size=1, bias=qkv_bias, norm_layer='none',
                                     act_layer=act_layer, inplace=inplace)
            else:
                self.v = nn.Identity()
        self.conv_local = ConvNormAct(dim_mid, dim_mid, kernel_size=dw_ks, stride=stride, dilation=dilation,
                                      groups=dim_mid, norm_layer='bn_2d', act_layer='silu', inplace=inplace)
        self.se = SqueezeExcite(dim_mid, rd_ratio=se_ratio, act_layer=get_act(act_layer)) if se_ratio > 0.0 else nn.Identity()
 
        self.proj_drop = nn.Dropout(drop)
        self.proj = ConvNormAct(dim_mid, dim_out, kernel_size=1, norm_layer='none', act_layer='none', inplace=inplace)
        self.drop_path = DropPath(drop_path) if drop_path else nn.Identity()
 
    def forward(self, x):
        shortcut = x
        x = self.norm(x)
        B, C, H, W = x.shape
        if self.attn_s:
            # padding
            if self.window_size <= 0:
                window_size_W, window_size_H = W, H
            else:
                window_size_W, window_size_H = self.window_size, self.window_size
            pad_l, pad_t = 0, 0
            pad_r = (window_size_W - W % window_size_W) % window_size_W
            pad_b = (window_size_H - H % window_size_H) % window_size_H
            x = F.pad(x, (pad_l, pad_r, pad_t, pad_b, 0, 0,))
            n1, n2 = (H + pad_b) // window_size_H, (W + pad_r) // window_size_W
            x = rearrange(x, 'b c (h1 n1) (w1 n2) -> (b n1 n2) c h1 w1', n1=n1, n2=n2).contiguous()
            # attention
            b, c, h, w = x.shape
            qk = self.qk(x)
            qk = rearrange(qk, 'b (qk heads dim_head) h w -> qk b heads (h w) dim_head', qk=2, heads=self.num_head,
                           dim_head=self.dim_head).contiguous()
            q, k = qk[0], qk[1]
            attn_spa = (q @ k.transpose(-2, -1)) * self.scale
            attn_spa = attn_spa.softmax(dim=-1)
            attn_spa = self.attn_drop(attn_spa)
            if self.attn_pre:
                x = rearrange(x, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()
                x_spa = attn_spa @ x
                x_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,
                                  w=w).contiguous()
                x_spa = self.v(x_spa)
            else:
                v = self.v(x)
                v = rearrange(v, 'b (heads dim_head) h w -> b heads (h w) dim_head', heads=self.num_head).contiguous()
                x_spa = attn_spa @ v
                x_spa = rearrange(x_spa, 'b heads (h w) dim_head -> b (heads dim_head) h w', heads=self.num_head, h=h,
                                  w=w).contiguous()
            # unpadding
            x = rearrange(x_spa, '(b n1 n2) c h1 w1 -> b c (h1 n1) (w1 n2)', n1=n1, n2=n2).contiguous()
            if pad_r > 0 or pad_b > 0:
                x = x[:, :, :H, :W].contiguous()
        else:
            x = self.v(x)
 
        x = x + self.se(self.conv_local(x)) if self.has_skip else self.se(self.conv_local(x))
 
        x = self.proj_drop(x)
        x = self.proj(x)
 
        x = (shortcut + self.drop_path(x)) if self.has_skip else x
        return x

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))
 
class HGBlock_iRMB(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = iRMB(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y


四、创新模块

4.1 改进点1⭐

模块改进方法 :直接加入 TripletAttention模块 第五节讲解添加步骤 )。

TripletAttention模块 添加后如下:

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 iRMB模块 HGBlock 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 HGBlock模块 进行改进,并将 iRMB 在加入到 HGBlock 模块中。

改进代码如下:

HGBlock 模块进行改进,加入 iRMB模块 ,并重命名为 HGBlock_iRMB

class HGBlock_iRMB(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = iRMB(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y
 

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: iRMB HGBlock_iRMB


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 iRMB.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .iRMB import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 HGBlock_iRMB 模块

在这里插入图片描述

在这里插入图片描述

最后:在 parse_model函数 中添加如下代码:

elif m in {iRMB}:
     c2 = ch[f]
     args = [c2, *args]

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本1

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-iRMB.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-iRMB.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是在 骨干网络中 添加 iRMB模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 1, iRMB, []] # stage 4
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 18], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 13], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[22, 25, 28], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_iRMB.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_iRMB.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 HGBlock模块 替换成 HGBlock_iRMB模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_iRMB, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_iRMB, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock_iRMB, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 iRMB HGBlock_iRMB 已经加入到模型中,并可以进行训练了。

rtdetr-l-iRMB

rtdetr-l-iRMB summary: 707 layers, 37,015,747 parameters, 37,015,747 gradients, 111.6 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  1   4207616  ultralytics.nn.AddModules.iRMB.iRMB          [1024]                        
 10                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 11                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 12                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 13                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 16            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 17                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 18                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 19                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 20                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 21            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 24            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 25                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 26                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 27            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 28                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 29        [22, 25, 28]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-iRMB summary: 707 layers, 37,015,747 parameters, 37,015,747 gradients, 111.6 GFLOPs

rtdetr-l-HGBlock_iRMB

rtdetr-l-HGBlock_iRMB summary: 760 layers, 45,430,979 parameters, 45,430,979 gradients, 151.5 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   5902976  ultralytics.nn.AddModules.iRMB.HGBlock_iRMB  [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   6263424  ultralytics.nn.AddModules.iRMB.HGBlock_iRMB  [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   6263424  ultralytics.nn.AddModules.iRMB.HGBlock_iRMB  [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_iRMB summary: 760 layers, 45,430,979 parameters, 45,430,979 gradients, 151.5 GFLOPs