学习资源站

RT-DETR改进策略【注意力机制篇】2024SCSA-CBAM空间和通道的协同注意模块(含HGBlock二次创新)_rtdetr结合cbam-

RT-DETR改进策略【注意力机制篇】| 2024 SCSA-CBAM 空间和通道的协同注意模块(含HGBlock二次创新)

一、本文介绍

本文记录的是 基于SCSA-CBAM注意力模块的RT-DETR目标检测改进方法研究 。现有注意力方法在空间-通道协同方面未充分挖掘其潜力,缺乏对多语义信息的充分利用来引导特征和缓解语义差异。 SCSA-CBAM注意力模块 构建一个空间-通道协同机制, 使空间注意力引导通道注意力增强综合学习,通道注意力从多语义水平调节更丰富的空间特定模式。



二、SCSA原理

SCSA :空间注意与通道注意的协同效应研究

SCSA(Spatial and Channel Synergistic Attention) 是一种新颖的、即插即用的空间和通道协同注意力机制,其设计的原理和优势如下:

2.1 原理

  • Shared Multi - Semantic Spatial Attention(SMSA)
    • 空间和通道分解 :将输入X沿高度和宽度维度分解,应用全局平均池化创建两个单向1D序列结构,然后将特征集划分为K个独立的子特征,每个子特征具有C / K个通道,便于高效提取多语义空间信息。
    • 轻量级卷积策略 :在四个子特征中应用核大小为3、5、7和9的深度一维卷积,以捕获不同的语义空间结构,并使用共享卷积来对齐,解决分解特征和应用一维卷积导致的有限感受野问题。使用Group Normalization对不同语义子特征进行归一化,最后使用Sigmoid激活函数生成空间注意力。
  • Progressive Channel - wise Self - Attention(PCSA)
    • 受ViT利用MHSA建模空间注意力中不同token之间相似性的启发,结合SMSA调制的空间先验来计算通道间相似性。
    • 采用渐进压缩方法来保留和利用SMSA提取的多语义空间信息,并减少MHSA的计算成本。
    • 具体实现过程包括池化、映射生成查询、键和值,进行注意力计算等。
  • 协同效应 :通过简单的串行连接集成SMSA和PCSA模块,空间注意力从每个特征中提取多语义空间信息,为通道注意力计算提供精确的空间先验;通道注意力利用整体特征图X来细化局部子特征的语义理解,缓解SMSA中多尺度卷积引起的语义差异。同时,不采用通道压缩,防止关键特征丢失。

在这里插入图片描述

2.2 优势

  • 高效的SMSA :利用多尺度深度共享1D卷积捕获每个特征通道的多语义空间信息,有效整合全局上下文依赖和多语义空间先验。
  • PCSA缓解语义差异 :使用SMSA计算引导的压缩空间知识来计算通道相似性和贡献,缓解空间结构中的语义差异。
  • 协同效应 :通过维度解耦、轻量级多语义引导和语义差异缓解来探索协同效应,在各种视觉任务和复杂场景中优于当前最先进的注意力机制。
  • 实验验证优势
    • 在图像分类任务中,SCSA在不同规模的网络中实现了最高的Top - 1准确率,且参数和计算复杂度较低,基于ResNet的推理速度仅次于CA,在准确性、速度和模型复杂度之间实现了较好的平衡。
    • 在目标检测任务中,在各种检测器、模型大小和对象尺度上优于其他先进的注意力方法,在复杂场景(如小目标、黑暗环境和红外场景)中进一步证明了其有效性和泛化能力。
    • 在分割任务中,基于多语义空间信息,在像素级任务中表现出色,显著优于其他注意力方法。
    • 可视化分析 :SCSA在相似的感受野条件下能明显关注多个关键区域,最大限度地减少关键信息丢失,为最终的下游任务提供丰富的特征信息,其协同设计在空间和通道域注意力计算中保留了关键信息,具有更优越的表示能力。
    • 其他分析 :SCSA具有更大的有效感受野,有利于网络利用丰富的上下文信息进行集体决策,从而提升性能;在计算复杂度方面,当模型宽度适当时,SCSA可以以线性复杂度进行推理;在推理吞吐量评估中,虽然SCSA比纯通道注意力略慢,但优于大多数混合注意力机制,在模型复杂性、推理速度和准确性之间实现了优化平衡。

论文: https://arxiv.org/pdf/2407.05128
源码: https://github.com/HZAI-ZJNU/SCSA

三、SCSA的实现代码

SCSA模块 的实现代码如下:

import torch
import torch.nn as nn
import typing as t
from einops import rearrange
from mmengine.model import BaseModule
from ultralytics.nn.modules.conv import LightConv

class SCSA(BaseModule):

    def __init__(
            self,
            dim: int,
            head_num: int=4,
            window_size: int = 7,
            group_kernel_sizes: t.List[int] = [3, 5, 7, 9],
            qkv_bias: bool = False,
            fuse_bn: bool = False,
            norm_cfg: t.Dict = dict(type='BN'),
            act_cfg: t.Dict = dict(type='ReLU'),
            down_sample_mode: str = 'avg_pool',
            attn_drop_ratio: float = 0.,
            gate_layer: str = 'sigmoid',
    ):
        super(SCSA, self).__init__()
        self.dim = dim
        self.head_num = head_num
        self.head_dim = dim // head_num
        self.scaler = self.head_dim ** -0.5
        self.group_kernel_sizes = group_kernel_sizes
        self.window_size = window_size
        self.qkv_bias = qkv_bias
        self.fuse_bn = fuse_bn
        self.down_sample_mode = down_sample_mode

        assert self.dim // 4, 'The dimension of input feature should be divisible by 4.'
        self.group_chans = group_chans = self.dim // 4

        self.local_dwc = nn.Conv1d(group_chans, group_chans, kernel_size=group_kernel_sizes[0],
                                   padding=group_kernel_sizes[0] // 2, groups=group_chans)
        self.global_dwc_s = nn.Conv1d(group_chans, group_chans, kernel_size=group_kernel_sizes[1],
                                      padding=group_kernel_sizes[1] // 2, groups=group_chans)
        self.global_dwc_m = nn.Conv1d(group_chans, group_chans, kernel_size=group_kernel_sizes[2],
                                      padding=group_kernel_sizes[2] // 2, groups=group_chans)
        self.global_dwc_l = nn.Conv1d(group_chans, group_chans, kernel_size=group_kernel_sizes[3],
                                      padding=group_kernel_sizes[3] // 2, groups=group_chans)
        self.sa_gate = nn.Softmax(dim=2) if gate_layer == 'softmax' else nn.Sigmoid()
        self.norm_h = nn.GroupNorm(4, dim)
        self.norm_w = nn.GroupNorm(4, dim)

        self.conv_d = nn.Identity()
        self.norm = nn.GroupNorm(1, dim)
        self.q = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=1, bias=qkv_bias, groups=dim)
        self.k = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=1, bias=qkv_bias, groups=dim)
        self.v = nn.Conv2d(in_channels=dim, out_channels=dim, kernel_size=1, bias=qkv_bias, groups=dim)
        self.attn_drop = nn.Dropout(attn_drop_ratio)
        self.ca_gate = nn.Softmax(dim=1) if gate_layer == 'softmax' else nn.Sigmoid()

        if window_size == -1:
            self.down_func = nn.AdaptiveAvgPool2d((1, 1))
        else:
            if down_sample_mode == 'recombination':
                self.down_func = self.space_to_chans
                # dimensionality reduction
                self.conv_d = nn.Conv2d(in_channels=dim * window_size ** 2, out_channels=dim, kernel_size=1, bias=False)
            elif down_sample_mode == 'avg_pool':
                self.down_func = nn.AvgPool2d(kernel_size=(window_size, window_size), stride=window_size)
            elif down_sample_mode == 'max_pool':
                self.down_func = nn.MaxPool2d(kernel_size=(window_size, window_size), stride=window_size)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        The dim of x is (B, C, H, W)
        """
        # Spatial attention priority calculation
        b, c, h_, w_ = x.size()
        # (B, C, H)
        x_h = x.mean(dim=3)
        l_x_h, g_x_h_s, g_x_h_m, g_x_h_l = torch.split(x_h, self.group_chans, dim=1)
        # (B, C, W)
        x_w = x.mean(dim=2)
        l_x_w, g_x_w_s, g_x_w_m, g_x_w_l = torch.split(x_w, self.group_chans, dim=1)

        x_h_attn = self.sa_gate(self.norm_h(torch.cat((
            self.local_dwc(l_x_h),
            self.global_dwc_s(g_x_h_s),
            self.global_dwc_m(g_x_h_m),
            self.global_dwc_l(g_x_h_l),
        ), dim=1)))
        x_h_attn = x_h_attn.view(b, c, h_, 1)

        x_w_attn = self.sa_gate(self.norm_w(torch.cat((
            self.local_dwc(l_x_w),
            self.global_dwc_s(g_x_w_s),
            self.global_dwc_m(g_x_w_m),
            self.global_dwc_l(g_x_w_l)
        ), dim=1)))
        x_w_attn = x_w_attn.view(b, c, 1, w_)

        x = x * x_h_attn * x_w_attn

        # Channel attention based on self attention
        # reduce calculations
        y = self.down_func(x)
        y = self.conv_d(y)
        _, _, h_, w_ = y.size()

        # normalization first, then reshape -> (B, H, W, C) -> (B, C, H * W) and generate q, k and v
        y = self.norm(y)
        q = self.q(y)
        k = self.k(y)
        v = self.v(y)
        # (B, C, H, W) -> (B, head_num, head_dim, N)
        q = rearrange(q, 'b (head_num head_dim) h w -> b head_num head_dim (h w)', head_num=int(self.head_num),
                      head_dim=int(self.head_dim))
        k = rearrange(k, 'b (head_num head_dim) h w -> b head_num head_dim (h w)', head_num=int(self.head_num),
                      head_dim=int(self.head_dim))
        v = rearrange(v, 'b (head_num head_dim) h w -> b head_num head_dim (h w)', head_num=int(self.head_num),
                      head_dim=int(self.head_dim))

        # (B, head_num, head_dim, head_dim)
        attn = q @ k.transpose(-2, -1) * self.scaler
        attn = self.attn_drop(attn.softmax(dim=-1))
        # (B, head_num, head_dim, N)
        attn = attn @ v
        # (B, C, H_, W_)
        attn = rearrange(attn, 'b head_num head_dim (h w) -> b (head_num head_dim) h w', h=int(h_), w=int(w_))
        # (B, C, 1, 1)
        attn = attn.mean((2, 3), keepdim=True)
        attn = self.ca_gate(attn)
        return attn * x

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class HGBlock_SCSA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = SCSA(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

四、创新模块

4.1 改进点1

模块改进方法 1️⃣:直接加入 SCSA模块
SCSA模块 添加后如下:

在这里插入图片描述

注意❗:需要声明的模块名称为: SCSA

4.2 改进点2⭐

模块改进方法 2️⃣:基于 SCSA模块 HGBlock

第二种改进方法是对 RT-DETR 中的 HGBlock模块 进行改进。 SCSA 的协同设计能够在空间和通道域注意力计算中保留了关键信息,最大限度地减少关键信息丢失,使 HGBlock模块 具有更优越的表示能力。

改进代码如下:

class HGBlock_SCSA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = SCSA(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

注意❗:需要声明的模块名称为: HGBlock_SCSA


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 SCSA.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .SCSA import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 SCSA HGBlock_SCSA 模块

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-SCSA.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-SCSA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。
在骨干网络中添加 SCSA模块 只需要填入一个参数,通道数

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 1, SCSA, [1024]] # stage 4
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 18], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 13], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[22, 25, 28], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本二⭐

此处同样以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_SCSA.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_SCSA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的部分 HGBlock模块 替换成 HGBlock_SCSA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_SCSA, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_SCSA, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock_SCSA, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

分别打印网络模型可以看到 SCSA HGBlock_SCSA 已经加入到模型中,并可以进行训练了。

rtdetr-l-SCSA

rtdetr-l-SCSA summary: 697 layers, 32,824,515 parameters, 32,824,515 gradients, 108.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  1     16384  ultralytics.nn.AddModules.SCSA.SCSA          [1024, 1024]                  
 10                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 11                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 12                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 13                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 16            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 17                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 18                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 19                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 20                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 21            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 24            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 25                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 26                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 27            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 28                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 29        [22, 25, 28]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-SCSA summary: 697 layers, 32,824,515 parameters, 32,824,515 gradients, 108.0 GFLOPs

rtdetr-l-HGBlock_SCSA

rtdetr-l-HGBlock_SCSA summary: 730 layers, 32,857,283 parameters, 32,857,283 gradients, 108.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1711744  ultralytics.nn.AddModules.SCSA.HGBlock_SCSA  [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2072192  ultralytics.nn.AddModules.SCSA.HGBlock_SCSA  [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2072192  ultralytics.nn.AddModules.SCSA.HGBlock_SCSA  [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_SCSA summary: 730 layers, 32,857,283 parameters, 32,857,283 gradients, 108.0 GFLOPs