RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示
一、本文介绍
本文记录的是
基于Shuffle Attention注意力模块的RT-DETR目标检测改进方法研究
。
Shuffle Attention模块
通过独特的设计原理,在保持轻量级的同时实现了高效的特征注意力机制,增强了网络的表示能力。本文对
RT-DETR
进行二次创新,以增强模型性能。
二、Shuffle Attention注意力原理
深度卷积神经网络的
Shuffle Attention
Shuffle Attention(SA)模块
是一种用于深度卷积神经网络的高效注意力模块,其设计原理和优势如下:
2.1、设计原理
-
特征分组(Feature Grouping)
:对于给定的特征图
X
∈
R
C
×
H
×
W
X \in R^{C \times H \times W}
X
∈
R
C
×
H
×
W
(其中
C
C
C
、
H
H
H
、
W
W
W
分别表示通道数、空间高度和宽度),
SA首先沿着通道维度将 X X X 分为 G G G 组,即 X = [ X 1 , ⋯ , X G ] X = [X_1, \cdots, X_G] X = [ X 1 , ⋯ , X G ] , X k ∈ R C G × H × W X_k \in R^{\frac{C}{G} \times H \times W} X k ∈ R G C × H × W 。在每个注意力单元开始时, X k X_k X k 的输入沿着通道维度被拆分为两个分支 X k 1 X_{k1} X k 1 和 X k 2 X_{k2} X k 2 ( X k 1 , X k 2 ∈ R C 2 G × H × W X_{k1}, X_{k2} \in R^{\frac{C}{2G} \times H \times W} X k 1 , X k 2 ∈ R 2 G C × H × W )。一个分支用于通过利用通道间的相互关系来生成通道注意力图,另一个分支用于通过利用特征的空间间关系来生成空间注意力图,从而使模型能够关注“什么”和“哪里”是有意义的。 -
通道注意力(Channel Attention)
:为了充分捕获通道间的依赖关系,
SA使用全局平均池化(GAP)来生成通道级别的统计信息 s ∈ R C 2 G × 1 × 1 s \in R^{\frac{C}{2G} \times 1 \times 1} s ∈ R 2 G C × 1 × 1 ,即 s = F g p ( X k 1 ) = 1 H × W ∑ i = 1 H ∑ j = 1 W X k 1 ( i , j ) s = \mathcal{F}_{gp}(X_{k1}) = \frac{1}{H \times W} \sum_{i = 1}^{H} \sum_{j = 1}^{W} X_{k1}(i, j) s = F g p ( X k 1 ) = H × W 1 ∑ i = 1 H ∑ j = 1 W X k 1 ( i , j ) 。然后,通过一个简单的带有sigmoid激活的门控机制创建一个紧凑的特征,以实现精确和自适应的选择指导。通道注意力的最终输出通过 X k 1 ′ = σ ( F c ( s ) ) ⋅ X k 1 = σ ( W 1 s + b 1 ) ⋅ X k 1 X_{k1}' = \sigma(\mathcal{F}_{c}(s)) \cdot X_{k1} = \sigma(W_1 s + b_1) \cdot X_{k1} X k 1 ′ = σ ( F c ( s )) ⋅ X k 1 = σ ( W 1 s + b 1 ) ⋅ X k 1 获得,其中 W 1 ∈ R C 2 G × 1 × 1 W_1 \in R^{\frac{C}{2G} \times 1 \times 1} W 1 ∈ R 2 G C × 1 × 1 和 b 1 ∈ R C 2 G × 1 × 1 b_1 \in R^{\frac{C}{2G} \times 1 \times 1} b 1 ∈ R 2 G C × 1 × 1 是用于缩放和移动 s s s 的参数。 -
空间注意力(Spatial Attention)
:与通道注意力不同,空间注意力关注“哪里”是信息丰富的部分,这与通道注意力是互补的。首先,使用
组归一化(GN)对 X k 2 X_{k2} X k 2 进行处理以获得空间级别的统计信息,然后采用 F c ( ⋅ ) Fc(\cdot) F c ( ⋅ ) 来增强 X ^ k 2 \hat{X}_{k2} X ^ k 2 的表示。空间注意力的最终输出通过 X k 2 ′ = σ ( W 2 ⋅ G N ( X k 2 ) + b 2 ) ⋅ X k 2 X_{k2}' = \sigma(W_2 \cdot GN(X_{k2}) + b_2) \cdot X_{k2} X k 2 ′ = σ ( W 2 ⋅ GN ( X k 2 ) + b 2 ) ⋅ X k 2 获得,其中 W 2 W_2 W 2 和 b 2 b_2 b 2 是形状为 R C 2 G × 1 × 1 R^{\frac{C}{2G} \times 1 \times 1} R 2 G C × 1 × 1 的参数。 -
聚合(Aggregation)
:之后,所有子特征被聚合。最后,类似于
ShuffleNet v2,采用“通道洗牌”(channel shuffle)操作来实现跨组信息在通道维度上的流动。
2.2、优势
-
轻量级且高效
:
SA模块通过将通道维度分组为子特征,并利用Shuffle Unit为每个子特征集成互补的通道和空间注意力模块,参数和计算量相对较少。例如,在ResNet50中,SA的参数为300,计算量为2.76e - 3 GFLOPs,而ResNet50的参数为25.56M,计算量为4.12 GFLOPs,但SA在Top - 1准确率上的提升超过了1.34%。 -
增强语义表示
:通过特征分组和通道洗牌,
SA能够显著增强特征图的语义表示。实验表明,在使用SA模块后,Top - 1准确率统计上有所提高,并且“通道洗牌”使得每个组的平均得分增加(约0.4%)。 -
验证有效性
:通过对不同深度的平均激活分布的观察以及使用GradCAM进行可视化,验证了
SA模块能够使分类模型更关注相关区域,从而有效提高分类准确率。 -
在各种任务中表现出色
:在ImageNet - 1k分类、MS COCO对象检测和实例分割等任务的实验中,
SA相比于当前的SOTA方法,在实现更高准确率的同时具有更低的模型复杂度,验证了其在各种计算机视觉任务中具有良好的泛化能力。
论文: https://arxiv.org/pdf/2102.00240
源码: https://github.com/wofmanaf/SA-Net
三、Shuffle Attention的实现代码
Shuffle Attention模块
的实现代码如下:
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn import init
from ultralytics.nn.modules.conv import LightConv
class ShuffleAttention(nn.Module):
def __init__(self, channel=512, reduction=16, G=8):
super().__init__()
self.G = G
self.channel = channel
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
self.sigmoid = nn.Sigmoid()
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
init.constant_(m.bias, 0)
elif isinstance(m, nn.BatchNorm2d):
init.constant_(m.weight, 1)
init.constant_(m.bias, 0)
elif isinstance(m, nn.Linear):
init.normal_(m.weight, std=0.001)
if m.bias is not None:
init.constant_(m.bias, 0)
@staticmethod
def channel_shuffle(x, groups):
b, c, h, w = x.shape
x = x.reshape(b, groups, -1, h, w)
x = x.permute(0, 2, 1, 3, 4)
# flatten
x = x.reshape(b, -1, h, w)
return x
def forward(self, x):
b, c, h, w = x.size()
# group into subfeatures
x = x.view(b * self.G, -1, h, w) # bs*G,c//G,h,w
# channel_split
x_0, x_1 = x.chunk(2, dim=1) # bs*G,c//(2*G),h,w
# channel attention
x_channel = self.avg_pool(x_0) # bs*G,c//(2*G),1,1
x_channel = self.cweight * x_channel + self.cbias # bs*G,c//(2*G),1,1
x_channel = x_0 * self.sigmoid(x_channel)
# spatial attention
x_spatial = self.gn(x_1) # bs*G,c//(2*G),h,w
x_spatial = self.sweight * x_spatial + self.sbias # bs*G,c//(2*G),h,w
x_spatial = x_1 * self.sigmoid(x_spatial) # bs*G,c//(2*G),h,w
# concatenate along channel axis
out = torch.cat([x_channel, x_spatial], dim=1) # bs*G,c//G,h,w
out = out.contiguous().view(b, -1, h, w)
# channel shuffle
out = self.channel_shuffle(out, 2)
return out
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class HGBlock_SA(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = ShuffleAttention(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
四、添加步骤
4.1 改进点1
模块改进方法
1️⃣:直接加入
ShuffleAttention模块
。(
第五节讲解添加步骤
)
ShuffleAttention模块
添加后如下:
注意❗:在
第五小节
中需要声明的模块名称为:
ShuffleAttention
。
4.2 改进点2⭐
模块改进方法
2️⃣:基于
ShuffleAttention模块
的
HGBlock
。(
第五节讲解添加步骤
)
相较方法一中的直接插入注意力模块,利用注意力模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。
第二种改进方法是对
RT-DETR
中的
HGBlock模块
进行改进,
Shuffle Attention模块
能够关注特征的空间和通道维度的依赖关系,在与
HGBlock模块
结合可以更全面地提取和强调重要特征,从而增强特征提取的效果。
改进代码如下:
class HGBlock_SA(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = ShuffleAttention(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
注意❗:在
第五小节
中需要声明的模块名称为:
HGBlock_SA
。
五、添加步骤
5.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
ShuffleAttention.py
,将
第三节
中的代码粘贴到此处
5.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .ShuffleAttention import *
5.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
HGBlock_SA
模块
六、yaml模型文件
6.1 模型改进版本一
在代码配置完成后,配置模型的YAML文件。
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-ShuffleAttention.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-ShuffleAttention.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
在骨干网络中添加
ShuffleAttention模块
,
只需要填入一个参数,通道数
。
📌
Shuffle Attention模块
能够有效地捕捉特征的空间和通道维度的依赖关系,从而使模型更加关注输入中相关的元素。在骨干网络中添加该模块,可以对高层特征进行重新校准,突出重要特征,抑制不重要的特征,提高特征的表达能力。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 1, ShuffleAttention, [1024]] # stage 4
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 18], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 13], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[22, 25, 28], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
6.2 模型改进版本二⭐
此处同样以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-HGBlock_SA.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-HGBlock_SA.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
中的所有
HGBlock模块
替换成
HGBlock_SA模块
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock_SA, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock_SA, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock_SA, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
七、成功运行结果
分别打印网络模型可以看到
ShuffleAttention模块
和
HGBlock_SA
已经加入到模型中,并可以进行训练了。
rtdetr-l-ShuffleAttention :
rtdetr-l-ShuffleAttention summary: 685 layers, 32,808,515 parameters, 32,808,515 gradients, 108.0 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 1695360 ultralytics.nn.modules.block.HGBlock [512, 192, 1024, 5, 6, True, False]
6 -1 6 2055808 ultralytics.nn.modules.block.HGBlock [1024, 192, 1024, 5, 6, True, True]
7 -1 6 2055808 ultralytics.nn.modules.block.HGBlock [1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 1 384 ultralytics.nn.AddModules.ShuffleAttention.ShuffleAttention[1024, 1024]
10 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
11 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
12 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
13 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
14 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
15 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
16 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
17 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
18 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
19 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
20 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
21 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
23 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
24 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
26 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
27 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
29 [22, 25, 28] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-ShuffleAttention summary: 685 layers, 32,808,515 parameters, 32,808,515 gradients, 108.0 GFLOPs
rtdetr-l-HGBlock_SA :
rtdetr-l-HGBlock_SA summary: 694 layers, 32,809,283 parameters, 32,809,283 gradients, 108.0 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 1695744 ultralytics.nn.AddModules.ShuffleAttention.HGBlock_SA[512, 192, 1024, 5, 6, True, False]
6 -1 6 2056192 ultralytics.nn.AddModules.ShuffleAttention.HGBlock_SA[1024, 192, 1024, 5, 6, True, True]
7 -1 6 2056192 ultralytics.nn.AddModules.ShuffleAttention.HGBlock_SA[1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
10 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
11 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
22 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
23 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
25 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
26 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
28 [21, 24, 27] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-HGBlock_SA summary: 694 layers, 32,809,283 parameters, 32,809,283 gradients, 108.0 GFLOPs