学习资源站

RT-DETR改进策略【注意力机制篇】引入ShuffleAttention注意力模块,增强特征图的语义表示_rtdetr实现特征注意力权重图-

RT-DETR改进策略【注意力机制篇】| 引入Shuffle Attention注意力模块,增强特征图的语义表示

一、本文介绍

本文记录的是 基于Shuffle Attention注意力模块的RT-DETR目标检测改进方法研究 Shuffle Attention模块 通过独特的设计原理,在保持轻量级的同时实现了高效的特征注意力机制,增强了网络的表示能力。本文对 RT-DETR 进行二次创新,以增强模型性能。



二、Shuffle Attention注意力原理

深度卷积神经网络的 Shuffle Attention

Shuffle Attention(SA)模块 是一种用于深度卷积神经网络的高效注意力模块,其设计原理和优势如下:

2.1、设计原理

  1. 特征分组(Feature Grouping) :对于给定的特征图 X ∈ R C × H × W X \in R^{C \times H \times W} X R C × H × W (其中 C C C H H H W W W 分别表示通道数、空间高度和宽度), SA 首先沿着通道维度将 X X X 分为 G G G 组,即 X = [ X 1 , ⋯ , X G ] X = [X_1, \cdots, X_G] X = [ X 1 , , X G ] X k ∈ R C G × H × W X_k \in R^{\frac{C}{G} \times H \times W} X k R G C × H × W 。在每个注意力单元开始时, X k X_k X k 的输入沿着通道维度被拆分为两个分支 X k 1 X_{k1} X k 1 X k 2 X_{k2} X k 2 X k 1 , X k 2 ∈ R C 2 G × H × W X_{k1}, X_{k2} \in R^{\frac{C}{2G} \times H \times W} X k 1 , X k 2 R 2 G C × H × W )。一个分支用于通过利用通道间的相互关系来生成通道注意力图,另一个分支用于通过利用特征的空间间关系来生成空间注意力图,从而使模型能够关注“什么”和“哪里”是有意义的。
  2. 通道注意力(Channel Attention) :为了充分捕获通道间的依赖关系, SA 使用 全局平均池化(GAP) 来生成通道级别的统计信息 s ∈ R C 2 G × 1 × 1 s \in R^{\frac{C}{2G} \times 1 \times 1} s R 2 G C × 1 × 1 ,即 s = F g p ( X k 1 ) = 1 H × W ∑ i = 1 H ∑ j = 1 W X k 1 ( i , j ) s = \mathcal{F}_{gp}(X_{k1}) = \frac{1}{H \times W} \sum_{i = 1}^{H} \sum_{j = 1}^{W} X_{k1}(i, j) s = F g p ( X k 1 ) = H × W 1 i = 1 H j = 1 W X k 1 ( i , j ) 。然后,通过一个简单的带有sigmoid激活的门控机制创建一个紧凑的特征,以实现精确和自适应的选择指导。通道注意力的最终输出通过 X k 1 ′ = σ ( F c ( s ) ) ⋅ X k 1 = σ ( W 1 s + b 1 ) ⋅ X k 1 X_{k1}' = \sigma(\mathcal{F}_{c}(s)) \cdot X_{k1} = \sigma(W_1 s + b_1) \cdot X_{k1} X k 1 = σ ( F c ( s )) X k 1 = σ ( W 1 s + b 1 ) X k 1 获得,其中 W 1 ∈ R C 2 G × 1 × 1 W_1 \in R^{\frac{C}{2G} \times 1 \times 1} W 1 R 2 G C × 1 × 1 b 1 ∈ R C 2 G × 1 × 1 b_1 \in R^{\frac{C}{2G} \times 1 \times 1} b 1 R 2 G C × 1 × 1 是用于缩放和移动 s s s 的参数。
  3. 空间注意力(Spatial Attention) :与通道注意力不同,空间注意力关注“哪里”是信息丰富的部分,这与通道注意力是互补的。首先,使用 组归一化(GN) X k 2 X_{k2} X k 2 进行处理以获得空间级别的统计信息,然后采用 F c ( ⋅ ) Fc(\cdot) F c ( ) 来增强 X ^ k 2 \hat{X}_{k2} X ^ k 2 的表示。空间注意力的最终输出通过 X k 2 ′ = σ ( W 2 ⋅ G N ( X k 2 ) + b 2 ) ⋅ X k 2 X_{k2}' = \sigma(W_2 \cdot GN(X_{k2}) + b_2) \cdot X_{k2} X k 2 = σ ( W 2 GN ( X k 2 ) + b 2 ) X k 2 获得,其中 W 2 W_2 W 2 b 2 b_2 b 2 是形状为 R C 2 G × 1 × 1 R^{\frac{C}{2G} \times 1 \times 1} R 2 G C × 1 × 1 的参数。
  4. 聚合(Aggregation) :之后,所有子特征被聚合。最后,类似于 ShuffleNet v2 ,采用“通道洗牌”(channel shuffle)操作来实现跨组信息在通道维度上的流动。

在这里插入图片描述

2.2、优势

  1. 轻量级且高效 SA模块 通过将通道维度分组为子特征,并利用 Shuffle Unit 为每个子特征集成互补的通道和空间注意力模块,参数和计算量相对较少。例如,在ResNet50中,SA的参数为300,计算量为2.76e - 3 GFLOPs,而ResNet50的参数为25.56M,计算量为4.12 GFLOPs,但SA在Top - 1准确率上的提升超过了1.34%。
  2. 增强语义表示 :通过特征分组和通道洗牌, SA 能够显著增强特征图的语义表示。实验表明,在使用SA模块后,Top - 1准确率统计上有所提高,并且“通道洗牌”使得每个组的平均得分增加(约0.4%)。
  3. 验证有效性 :通过对不同深度的平均激活分布的观察以及使用GradCAM进行可视化,验证了 SA模块 能够使分类模型更关注相关区域,从而有效提高分类准确率。
  4. 在各种任务中表现出色 :在ImageNet - 1k分类、MS COCO对象检测和实例分割等任务的实验中, SA 相比于当前的SOTA方法,在实现更高准确率的同时具有更低的模型复杂度,验证了其在各种计算机视觉任务中具有良好的泛化能力。

论文: https://arxiv.org/pdf/2102.00240
源码: https://github.com/wofmanaf/SA-Net

三、Shuffle Attention的实现代码

Shuffle Attention模块 的实现代码如下:

import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
from torch.nn import init

from ultralytics.nn.modules.conv import LightConv

class ShuffleAttention(nn.Module):
 
    def __init__(self, channel=512, reduction=16, G=8):
        super().__init__()
        self.G = G
        self.channel = channel
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.gn = nn.GroupNorm(channel // (2 * G), channel // (2 * G))
        self.cweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.cbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sweight = Parameter(torch.zeros(1, channel // (2 * G), 1, 1))
        self.sbias = Parameter(torch.ones(1, channel // (2 * G), 1, 1))
        self.sigmoid = nn.Sigmoid()
 
    def init_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    init.constant_(m.bias, 0)
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                init.normal_(m.weight, std=0.001)
                if m.bias is not None:
                    init.constant_(m.bias, 0)
 
    @staticmethod
    def channel_shuffle(x, groups):
        b, c, h, w = x.shape
        x = x.reshape(b, groups, -1, h, w)
        x = x.permute(0, 2, 1, 3, 4)
 
        # flatten
        x = x.reshape(b, -1, h, w)
 
        return x
 
    def forward(self, x):
        b, c, h, w = x.size()
        # group into subfeatures
        x = x.view(b * self.G, -1, h, w)  # bs*G,c//G,h,w
 
        # channel_split
        x_0, x_1 = x.chunk(2, dim=1)  # bs*G,c//(2*G),h,w
 
        # channel attention
        x_channel = self.avg_pool(x_0)  # bs*G,c//(2*G),1,1
        x_channel = self.cweight * x_channel + self.cbias  # bs*G,c//(2*G),1,1
        x_channel = x_0 * self.sigmoid(x_channel)
 
        # spatial attention
        x_spatial = self.gn(x_1)  # bs*G,c//(2*G),h,w
        x_spatial = self.sweight * x_spatial + self.sbias  # bs*G,c//(2*G),h,w
        x_spatial = x_1 * self.sigmoid(x_spatial)  # bs*G,c//(2*G),h,w
 
        # concatenate along channel axis
        out = torch.cat([x_channel, x_spatial], dim=1)  # bs*G,c//G,h,w
        out = out.contiguous().view(b, -1, h, w)
 
        # channel shuffle
        out = self.channel_shuffle(out, 2)
        return out

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class HGBlock_SA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = ShuffleAttention(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y


四、添加步骤

4.1 改进点1

模块改进方法 1️⃣:直接加入 ShuffleAttention模块 。( 第五节讲解添加步骤
ShuffleAttention模块 添加后如下:

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: ShuffleAttention

4.2 改进点2⭐

模块改进方法 2️⃣:基于 ShuffleAttention模块 HGBlock 。( 第五节讲解添加步骤

相较方法一中的直接插入注意力模块,利用注意力模块对卷积等其他模块进行改进,其新颖程度会更高一些,训练精度可能会表现的更高。

第二种改进方法是对 RT-DETR 中的 HGBlock模块 进行改进, Shuffle Attention模块 能够关注特征的空间和通道维度的依赖关系,在与 HGBlock模块 结合可以更全面地提取和强调重要特征,从而增强特征提取的效果。

改进代码如下:

class HGBlock_SA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = ShuffleAttention(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: HGBlock_SA


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 ShuffleAttention.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .ShuffleAttention import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 HGBlock_SA 模块

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-ShuffleAttention.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-ShuffleAttention.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。
在骨干网络中添加 ShuffleAttention模块 只需要填入一个参数,通道数

📌 Shuffle Attention模块 能够有效地捕捉特征的空间和通道维度的依赖关系,从而使模型更加关注输入中相关的元素。在骨干网络中添加该模块,可以对高层特征进行重新校准,突出重要特征,抑制不重要的特征,提高特征的表达能力。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 1, ShuffleAttention, [1024]] # stage 4
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 18], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 13], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[22, 25, 28], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本二⭐

此处同样以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_SA.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_SA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的所有 HGBlock模块 替换成 HGBlock_SA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_SA, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_SA, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock_SA, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

分别打印网络模型可以看到 ShuffleAttention模块 HGBlock_SA 已经加入到模型中,并可以进行训练了。

rtdetr-l-ShuffleAttention

rtdetr-l-ShuffleAttention summary: 685 layers, 32,808,515 parameters, 32,808,515 gradients, 108.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  1       384  ultralytics.nn.AddModules.ShuffleAttention.ShuffleAttention[1024, 1024]                  
 10                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 11                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 12                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 13                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 16            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 17                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 18                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 19                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 20                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 21            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 24            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 25                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 26                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 27            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 28                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 29        [22, 25, 28]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-ShuffleAttention summary: 685 layers, 32,808,515 parameters, 32,808,515 gradients, 108.0 GFLOPs

rtdetr-l-HGBlock_SA

rtdetr-l-HGBlock_SA summary: 694 layers, 32,809,283 parameters, 32,809,283 gradients, 108.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695744  ultralytics.nn.AddModules.ShuffleAttention.HGBlock_SA[512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2056192  ultralytics.nn.AddModules.ShuffleAttention.HGBlock_SA[1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2056192  ultralytics.nn.AddModules.ShuffleAttention.HGBlock_SA[1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_SA summary: 694 layers, 32,809,283 parameters, 32,809,283 gradients, 108.0 GFLOPs