学习资源站

RT-DETR改进策略【卷积层】RCS-OSA通道混洗的重参数化卷积二次创新ResNetLayer_rcsosa-

RT-DETR改进策略【卷积层】| RCS-OSA 通道混洗的重参数化卷积 二次创新ResNetLayer

一、本文介绍

本文记录的是 利用 RCS-OSA 模块优化 RT-DETR 的目标检测网络模型 RCS-OSA 的全称为 Reparameterized Convolution based on channel Shuffle - One - Shot Aggregation ,即基于 通道混洗的重参数化卷积 - 一次性聚合 优势在于 RCS模块 的重复堆叠确保了特征的重用,并增强了相邻层特征之间不同通道的信息流,从而可以提取更丰富的特征信息,并降低了内存访问成本 。本文将深入分析 RCS-OSA模块 的特点,结合 RT-DETR ,实现精准涨点。



二、RCS-OSA介绍

RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor Detection

为克服 DenseNet 中密集连接的低效问题,同时为了在 YOLO架构 中更好地进行特征提取和信息融合,提高计算效率和检测性能,设计了 RCS-OSA模块

2.1 原理

2.1.1 OSA模块

One-Shot Aggregation (OSA)模块 通过用多感受野表示多样化特征,并在最后特征图中仅聚合一次所有特征来克服DenseNet的低效。

2.1.2 RCS模块

RCS OSA 结合, RCS模块 的重复堆叠确保了特征的重用,并增强了相邻层特征之间不同通道的信息流。

在这里插入图片描述

RCS 的结构。(a)培训阶段的 RepVGG 。(b)模型推理(或部署)期间的 RepConv 。带有黑色外边框的矩形表示张量的特定模操作;渐变颜色的矩形表示张量的特定特征,矩形的宽度表示张量的通道。

2.2 结构

(1). 通道拆分与多分支构建

  • 给定输入张量的特征维度为 C × H × W C\times H\times W C × H × W ,经过通道拆分操作(channel split operator)后,被分成两个维度相等( C × H × W C\times H\times W C × H × W )的不同通道方向的张量。
  • 对于其中一个张量,使用恒等分支(identity branch)、 1 × 1 1\times1 1 × 1 卷积和 3 × 3 3\times3 3 × 3 卷积来构建训练时的RCS。

(2). 结构重参数化

  • 在推理阶段,恒等分支、 1 × 1 1\times1 1 × 1 卷积和 3 × 3 3\times3 3 × 3 卷积通过结构重参数化被转换为 3 × 3 3\times3 3 × 3 的RepConv。这种多分支拓扑架构在训练时可以学习丰富的特征信息,而简化的单分支架构在推理时可以节省内存消耗,实现快速推理。

(3). 通道拼接与通道混洗

  • 对其中一个张量进行多分支训练后,将其与另一个张量以通道方式拼接(concatenated in a channel - wise manner)。
  • 同时应用通道混洗操作(channel shuffle operator)来增强两个张量之间的信息融合,使得能够以较低的计算复杂度实现输入的不同通道特征之间的深度测量。

在这里插入图片描述

2.3 优势

  • 语义信息提取 :在骨干网络和颈部网络的不同阶段使用不同数量的堆叠RCS实现语义信息提取。
  • 降低内存成本 :保持相同数量的输入通道和最少的输出通道,从而降低内存访问成本(MAC)。
  • 提高计算效率 :与Efficient Layer Aggregation Networks (ELAN)相比,FLOPs降低近50%,MAC也降低,实现了高精度快速推理。

论文: https://arxiv.org/ftp/arxiv/papers/2307/2307.16412.pdf
源码: https://github.com/mkang315/RCS-YOLO

三、RCSOSA的实现代码

RCSOSA模块 的实现代码如下:

import torch.nn as nn
import torch
import torch.nn.functional as F
import numpy as np
import math
 
# build RepVGG block
# -----------------------------
def conv_bn(in_channels, out_channels, kernel_size, stride, padding, groups=1):
    result = nn.Sequential()
    result.add_module('conv', nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
                                        kernel_size=kernel_size, stride=stride, padding=padding, groups=groups,
                                        bias=False))
    result.add_module('bn', nn.BatchNorm2d(num_features=out_channels))
 
    return result
 
class SEBlock(nn.Module):
    def __init__(self, input_channels):
        super(SEBlock, self).__init__()
        internal_neurons = input_channels // 8
        self.down = nn.Conv2d(in_channels=input_channels, out_channels=internal_neurons, kernel_size=1, stride=1,
                              bias=True)
        self.up = nn.Conv2d(in_channels=internal_neurons, out_channels=input_channels, kernel_size=1, stride=1,
                            bias=True)
        self.input_channels = input_channels
 
    def forward(self, inputs):
        x = F.avg_pool2d(inputs, kernel_size=inputs.size(3))
        x = self.down(x)
        x = F.relu(x)
        x = self.up(x)
        x = torch.sigmoid(x)
        x = x.view(-1, self.input_channels, 1, 1)
        return inputs * x
 
class RepVGG(nn.Module):
 
    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, padding=1, dilation=1, groups=1, padding_mode='zeros', deploy=False, use_se=False):
        super(RepVGG, self).__init__()
        self.deploy = deploy
        self.groups = groups
        self.in_channels = in_channels
 
        padding_11 = padding - kernel_size // 2
 
        self.nonlinearity = nn.SiLU()
        # self.nonlinearity = nn.ReLU()
 
        if use_se:
            self.se = SEBlock(out_channels, internal_neurons=out_channels // 16)
        else:
            self.se = nn.Identity()
 
        if deploy:
            self.rbr_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                         stride=stride,
                                         padding=padding, dilation=dilation, groups=groups, bias=True,
                                         padding_mode=padding_mode)
 
        else:
            self.rbr_identity = nn.BatchNorm2d(
                num_features=in_channels) if out_channels == in_channels and stride == 1 else None
            self.rbr_dense = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                     stride=stride, padding=padding, groups=groups)
            self.rbr_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
                                   padding=padding_11, groups=groups)
            # print('RepVGG Block, identity = ', self.rbr_identity)
 
    def get_equivalent_kernel_bias(self):
        kernel3x3, bias3x3 = self._fuse_bn_tensor(self.rbr_dense)
        kernel1x1, bias1x1 = self._fuse_bn_tensor(self.rbr_1x1)
        kernelid, biasid = self._fuse_bn_tensor(self.rbr_identity)
        return kernel3x3 + self._pad_1x1_to_3x3_tensor(kernel1x1) + kernelid, bias3x3 + bias1x1 + biasid
 
    def _pad_1x1_to_3x3_tensor(self, kernel1x1):
        if kernel1x1 is None:
            return 0
        else:
            return torch.nn.functional.pad(kernel1x1, [1, 1, 1, 1])
 
    def _fuse_bn_tensor(self, branch):
        if branch is None:
            return 0, 0
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = np.zeros((self.in_channels, input_dim, 3, 3), dtype=np.float32)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim, 1, 1] = 1
                self.id_tensor = torch.from_numpy(kernel_value).to(branch.weight.device)
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std
 
    def forward(self, inputs):
        if hasattr(self, 'rbr_reparam'):
            return self.nonlinearity(self.se(self.rbr_reparam(inputs)))
 
        if self.rbr_identity is None:
            id_out = 0
        else:
            id_out = self.rbr_identity(inputs)
 
        return self.nonlinearity(self.se(self.rbr_dense(inputs) + self.rbr_1x1(inputs) + id_out))
 
    def fusevggforward(self, x):
        return self.nonlinearity(self.rbr_dense(x))
 
# RepVGG block end
# -----------------------------
 
class SR(nn.Module):
    # Shuffle RepVGG
    def __init__(self, c1, c2):
        super().__init__()
        c1_ = int(c1 // 2)
        c2_ = int(c2 // 2)
        self.repconv = RepVGG(c1_, c2_)
 
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        out = torch.cat((x1, self.repconv(x2)), dim=1)
        out = self.channel_shuffle(out, 2)
        return out
 
    def channel_shuffle(self, x, groups):
        batchsize, num_channels, height, width = x.data.size()
        channels_per_group = num_channels // groups
        x = x.view(batchsize, groups, channels_per_group, height, width)
        x = torch.transpose(x, 1, 2).contiguous()
        x = x.view(batchsize, -1, height, width)
        return x

def make_divisible(x, divisor):
    # Returns nearest x divisible by divisor
    if isinstance(divisor, torch.Tensor):
        divisor = int(divisor.max())  # to int
    return math.ceil(x / divisor) * divisor
 
class RCSOSA(nn.Module):
    # VoVNet with Res Shuffle RepVGG
    def __init__(self, c1, c2, n=1, se=False, e=0.5, stackrep=True):
        super().__init__()
        n_ = n // 2
        c_ = make_divisible(int(c1 * e), 8)
        # self.conv1 = Conv(c1, c_)
        self.conv1 = RepVGG(c1, c_)
        self.conv3 = RepVGG(int(c_ * 3), c2)
        self.sr1 = nn.Sequential(*[SR(c_, c_) for _ in range(n_)])
        self.sr2 = nn.Sequential(*[SR(c_, c_) for _ in range(n_)])
 
        self.se = None
        if se:
            self.se = SEBlock(c2)
 
    def forward(self, x):
        x1 = self.conv1(x)
        x2 = self.sr1(x1)
        x3 = self.sr2(x2)
        x = torch.cat((x1, x2, x3), 1)
        return self.conv3(x) if self.se is None else self.se(self.conv3(x))
 
def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = RCSOSA(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_RCSOSA(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)


四、创新模块

4.1 改进点1⭐

模块改进方法 :直接加入 RCSOSA 模块 第五节讲解添加步骤 )。

RCSOSA 模块 添加后如下:

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 RCSOSA 模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进,并将 RCSOSA 在加入到 ResNetLayer 模块中。

改进代码如下:

RCSOSA 加入到 ResNetBlock 模块中,并将 ResNetLayer 重命名为 ResNetLayer_RCSOSA

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = RCSOSA(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_RCSOSA(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: RCSOSA ResNetLayer_RCSOSA


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 RCSOSA .py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .RCSOSA import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 RCSOSA ResNetLayer_RCSOSA 模块

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本1

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-RCSOSA .yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-RCSOSA .yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中添加 RCSOSA 模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, RCSOSA, [128]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_AKConv.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_RCSOSA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的所有 ResNetLayer模块 替换成 ResNetLayer_RCSOSA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_RCSOSA, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_RCSOSA, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_RCSOSA, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_RCSOSA, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_RCSOSA, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 RCSOSA ResNetLayer_RCSOSA 已经加入到模型中,并可以进行训练了。

**rtdetr-l-RCSOSA **:

rtdetr-l-RCSOSA summary: 782 layers, 33,841,219 parameters, 33,841,219 gradients, 121.2 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6   1970688  ultralytics.nn.AddModules.RCSOSA.RCSOSA      [128, 128]                    
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [128, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-RCSOSA summary: 782 layers, 33,841,219 parameters, 33,841,219 gradients, 121.2 GFLOPs

**rtdetr-ResNetLayer_RCSOSA **:

rtdetr-ResNetLayer_RCSOSA summary: 865 layers, 119,506,339 parameters, 119,506,339 gradients, 335.6 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.RCSOSA.ResNetLayer_RCSOSA[3, 64, 1, True, 1]           
  1                  -1  1    967296  ultralytics.nn.AddModules.RCSOSA.ResNetLayer_RCSOSA[64, 64, 1, False, 3]         
  2                  -1  1   5222400  ultralytics.nn.AddModules.RCSOSA.ResNetLayer_RCSOSA[256, 128, 2, False, 4]       
  3                  -1  1  31099904  ultralytics.nn.AddModules.RCSOSA.ResNetLayer_RCSOSA[512, 256, 2, False, 6]       
  4                  -1  1  62952448  ultralytics.nn.AddModules.RCSOSA.ResNetLayer_RCSOSA[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_RCSOSA summary: 865 layers, 119,506,339 parameters, 119,506,339 gradients, 335.6 GFLOPs