学习资源站

RT-DETR改进策略【独家融合改进】 U-Net V2 + 小目标检测头,加强跨尺度的上下文特征融合,提高小目标检测能力-

RT-DETR改进策略【独家融合改进】| U-Net V2 + 小目标检测头,加强跨尺度的上下文特征融合,提高小目标检测能力

一、本文介绍

本文记录的是 基于U-Net V2和小目标检测头的RT-DETR目标检测改进方法研究 U-Net V2 强大的特征提取能力 融合 小目标检测头 既保留了细节特征的准确性,又增强了模型对小目标的提取能力 ,使得最终的特征表示更加完善和准。



二、U-Net V2模型轻量化设计

U-NET V2: RETHINKING THE SKIP CONNECTIONS OF U-NET FOR MEDICAL IMAGE SEGMENTATION

以下是对 UNet V2 网络的详细介绍:

2.1 出发点

  • 改进U-Net连接方式 :传统U-Net基于模型中的连接方式在整合低层次和高层次特征时不够有效。例如在ResNet中,即使在大规模图像数据集上训练,网络学习恒等映射函数也可能存在困难。
  • 融合语义和细节信息 :编码器提取的低层次特征细节丰富但语义信息不足且可能含噪声,高层次特征语义信息多但细节缺失(如对象边界)。简单通过拼接融合特征依赖网络学习能力,在医学影像数据有限的情况下是个挑战,且可能限制不同层次信息贡献并引入噪声,还会增加GPU内存消耗和计算量。

2.1 原理

2.2.1 语义和细节融合原理

  • 对于输入图像,首先用深度神经网络编码器提取多级特征。然后对于第 i i i 级特征图,通过简单的 Hadamard乘积 操作明确注入更高层次(含更多语义信息)和更低层次(捕捉更精细细节)的特征,增强第 i i i 级特征的语义和细节。最后将改进后的特征传输到解码器进行分辨率重建和分割。

2.2.2 注意力机制原理

  • 语义和细节融合模块(SDI) 中,首先对编码器生成的每一级特征 f i o f_{i}^{o} f i o 应用空间和通道注意力机制,使特征能够整合局部空间信息和全局通道信息,公式为 f i 1 = ϕ i c ( φ i s ( f i 0 ) ) f_{i}^{1}=\phi_{i}^{c}\left(\varphi_{i}^{s}\left(f_{i}^{0}\right)\right) f i 1 = ϕ i c ( φ i s ( f i 0 ) ) 。然后应用 1 × 1 1×1 1 × 1 卷积减少通道数得到 f i 2 f_{i}^{2} f i 2

2.3 结构

2.3.1 整体架构

编码器 SDI模块 解码器 三个主要模块组成。
- 编码器 :对于输入图像 I I I I ∈ R H × W × C I \in R^{H ×W ×C} I R H × W × C ), 编码器 产生 M M M 级特征,第 i i i 级特征记为 f i 0 f_{i}^{0} f i 0 1 ≤ i ≤ M 1 ≤i ≤M 1 i M ),这些特征被传输到 SDI模块 进一步细化。

2.3.2 SDI模块

  • 首先应用 空间和通道注意力机制 并通过 1 × 1 1×1 1 × 1 卷积调整特征通道数得到 f i 2 f_{i}^{2} f i 2 。然后在每个解码器级别 i i i ,调整其他级别 j j j 的特征图大小以匹配 f i 2 f_{i}^{2} f i 2 的分辨率,再应用 3 × 3 3×3 3 × 3 卷积平滑调整后的特征图 f i j 3 f_{ij}^{3} f ij 3 得到 f i j 4 f_{ij}^{4} f ij 4 。最后对所有调整后的特征图应用 元素级Hadamard乘积 得到 f i 5 f_{i}^{5} f i 5 ,并将其发送到第 i i i 级解码器。
  • 解码器 :接收 SDI模块 处理后的特征进行分辨率重建和分割。

在这里插入图片描述

2.4 优势

  • 性能优势
    • 在皮肤病变分割和息肉分割的多个公共医学图像分割数据集上进行评估,实验结果表明 UNet V2 在分割准确性上优于现有技术方法。例如在ISIC 2017数据集上,DSC分数比U - Net提高了 1.44 % 1.44\% 1.44% ,IoU分数提高了 2.36 % 2.36\% 2.36% ;在Kvasir - SEG数据集上,DSC分数比U - Net提高了 11.0 % 11.0\% 11.0%
  • 效率优势
    • 保持了内存和计算效率。与UNet++相比,在使用NVIDIA P100 GPU进行实验时,UNet V2的参数更少,GPU内存使用量更小,FLOPs和FPS更优。例如在相同输入图像大小 ( 1 , 3 , 256 , 256 ) (1,3,256,256) ( 1 , 3 , 256 , 256 ) 下, UNet V2 的参数为 25.02 M 25.02M 25.02 M ,而UNet++为 29.87 M 29.87M 29.87 M ;UNet V2的GPU内存使用量为 411.42 M B 411.42MB 411.42 MB ,UNet++为 607.31 M B 607.31MB 607.31 MB

论文: https://arxiv.org/pdf/2311.17791
源码: https://github.com/yaoppeng/U-Net_v2

三、检测头尺寸介绍

  1. P3/8 - small检测头
    • 原始模型中的 P3/8特征层 对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
    • 适合检测尺寸大概在 8x8 32x32 像素左右的目标。
  2. P4/16 - medium检测头
    • 这个检测头对应的 P4/16特征层 经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
    • 它主要用于检测中等大小的目标,尺寸范围大概在 32x32 64x64 像素左右。
  3. P5/32 - large检测头
    • P5/32 是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
    • 该检测头适合检测较大尺寸的目标,一般是尺寸在 64x64像素以上 的目标。
  4. 新添加针对小目标的检测头
    • 新添加的检测头主要用于检测更小尺寸的目标。尺寸在 4x4 8x8 像素左右的微小目标。

💡这是因为在目标检测任务中,随着目标尺寸的减小,需要更高分辨率的特征图来有效捕捉目标特征。新添加的检测头很可能是基于这样的考虑,通过一系列的卷积、上采样和拼接等操作生成适合微小目标检测的特征图,从而提高模型对微小目标的检测能力。

四、U-Net V2和P2检测头的实现代码

UNetV2模块 的实现代码如下:

 
 
import os.path
import warnings
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
import math
 
__all__ = ['pvt_v2_b0', 'pvt_v2_b1', 'pvt_v2_b2', 'pvt_v2_b3', 'pvt_v2_b4', 'pvt_v2_b5']
 
class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
 
        self.fc1 = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2 = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)
 
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)

class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()
 
        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1
 
        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()
 
    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)

class BasicConv2d(nn.Module):
    def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1):
        super(BasicConv2d, self).__init__()
 
        self.conv = nn.Conv2d(in_planes, out_planes,
                              kernel_size=kernel_size, stride=stride,
                              padding=padding, dilation=dilation, bias=False)
        self.bn = nn.BatchNorm2d(out_planes)
        self.relu = nn.ReLU(inplace=True)
 
    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        return x

class Encoder(nn.Module):
    def __init__(self, pretrain_path):
        super().__init__()
        self.backbone = pvt_v2_b2()
 
        if pretrain_path is None:
            warnings.warn('please provide the pretrained pvt model. Not using pretrained model.')
        elif not os.path.isfile(pretrain_path):
            warnings.warn(f'path: {pretrain_path} does not exists. Not using pretrained model.')
        else:
            print(f"using pretrained file: {pretrain_path}")
            save_model = torch.load(pretrain_path)
            model_dict = self.backbone.state_dict()
            state_dict = {k: v for k, v in save_model.items() if k in model_dict.keys()}
            model_dict.update(state_dict)
 
            self.backbone.load_state_dict(model_dict)
 
    def forward(self, x):
        f1, f2, f3, f4 = self.backbone(x)  # (x: 3, 352, 352)
        return f1, f2, f3, f4

class SDI(nn.Module):
    def __init__(self, channel):
        super().__init__()
 
        self.convs = nn.ModuleList(
            [nn.Conv2d(channel, channel, kernel_size=3, stride=1, padding=1) for _ in range(4)])
 
    def forward(self, xs, anchor):
        ans = torch.ones_like(anchor)
        target_size = anchor.shape[-1]
 
        for i, x in enumerate(xs):
            if x.shape[-1] > target_size:
                x = F.adaptive_avg_pool2d(x, (target_size, target_size))
            elif x.shape[-1] < target_size:
                x = F.interpolate(x, size=(target_size, target_size),
                                      mode='bilinear', align_corners=True)
 
            ans = ans * self.convs[i](x)
 
        return ans

class UNetV2(nn.Module):
    """
    use SpatialAtt + ChannelAtt
    """
    def __init__(self, channel=3, n_classes=1, deep_supervision=True, pretrained_path=None):
        super().__init__()
        self.deep_supervision = deep_supervision
 
        self.encoder = Encoder(pretrained_path)
 
        self.ca_1 = ChannelAttention(64)
        self.sa_1 = SpatialAttention()
 
        self.ca_2 = ChannelAttention(128)
        self.sa_2 = SpatialAttention()
 
        self.ca_3 = ChannelAttention(320)
        self.sa_3 = SpatialAttention()
 
        self.ca_4 = ChannelAttention(512)
        self.sa_4 = SpatialAttention()
 
        self.Translayer_1 = BasicConv2d(64, channel, 1)
        self.Translayer_2 = BasicConv2d(128, channel, 1)
        self.Translayer_3 = BasicConv2d(320, channel, 1)
        self.Translayer_4 = BasicConv2d(512, channel, 1)
 
        self.sdi_1 = SDI(channel)
        self.sdi_2 = SDI(channel)
        self.sdi_3 = SDI(channel)
        self.sdi_4 = SDI(channel)
 
        self.seg_outs = nn.ModuleList([
            nn.Conv2d(channel, n_classes, 1, 1) for _ in range(4)])
 
        self.deconv2 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2, padding=1,
                                          bias=False)
        self.deconv3 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
        self.deconv4 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
        self.deconv5 = nn.ConvTranspose2d(channel, channel, kernel_size=4, stride=2,
                                          padding=1, bias=False)
 
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
 
    def forward(self, x):
        seg_outs = []
        f1, f2, f3, f4 = self.encoder(x)
 
        f1 = self.ca_1(f1) * f1
        f1 = self.sa_1(f1) * f1
        f1 = self.Translayer_1(f1)
 
        f2 = self.ca_2(f2) * f2
        f2 = self.sa_2(f2) * f2
        f2 = self.Translayer_2(f2)
 
        f3 = self.ca_3(f3) * f3
        f3 = self.sa_3(f3) * f3
        f3 = self.Translayer_3(f3)
 
        f4 = self.ca_4(f4) * f4
        f4 = self.sa_4(f4) * f4
        f4 = self.Translayer_4(f4)
 
        f41 = self.sdi_4([f1, f2, f3, f4], f4)
        f31 = self.sdi_3([f1, f2, f3, f4], f3)
        f21 = self.sdi_2([f1, f2, f3, f4], f2)
        f11 = self.sdi_1([f1, f2, f3, f4], f1)
 
        seg_outs.append(self.seg_outs[0](f41))
 
        y = self.deconv2(f41) + f31
        seg_outs.append(self.seg_outs[1](y))
 
        y = self.deconv3(y) + f21
        seg_outs.append(self.seg_outs[2](y))
 
        y = self.deconv4(y) + f11
        seg_outs.append(self.seg_outs[3](y))
 
        for i, o in enumerate(seg_outs):
            seg_outs[i] = F.interpolate(o, scale_factor=4, mode='bilinear')
 
        if self.deep_supervision:
            return seg_outs[::-1]
        else:
            return seg_outs[-1]

class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.dwconv = DWConv(hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x, H, W):
        x = self.fc1(x)
        x = self.dwconv(x, H, W)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class Attention(nn.Module):
    def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
        super().__init__()
        assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
 
        self.dim = dim
        self.num_heads = num_heads
        head_dim = dim // num_heads
        self.scale = qk_scale or head_dim ** -0.5
 
        self.q = nn.Linear(dim, dim, bias=qkv_bias)
        self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
 
        self.sr_ratio = sr_ratio
        if sr_ratio > 1:
            self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
            self.norm = nn.LayerNorm(dim)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x, H, W):
        B, N, C = x.shape
        q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
 
        if self.sr_ratio > 1:
            x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
            x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
            x_ = self.norm(x_)
            kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        else:
            kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        k, v = kv[0], kv[1]
 
        attn = (q @ k.transpose(-2, -1)) * self.scale
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)
 
        x = (attn @ v).transpose(1, 2).reshape(B, N, C)
        x = self.proj(x)
        x = self.proj_drop(x)
 
        return x

class Block(nn.Module):
 
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
        super().__init__()
        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim,
            num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x, H, W):
        x = x + self.drop_path(self.attn(self.norm1(x), H, W))
        x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
 
        return x

class OverlapPatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
 
    def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
 
        self.img_size = img_size
        self.patch_size = patch_size
        self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
        self.num_patches = self.H * self.W
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=stride,
                              padding=(patch_size[0] // 2, patch_size[1] // 2))
        self.norm = nn.LayerNorm(embed_dim)
 
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def forward(self, x):
        x = self.proj(x)
        _, _, H, W = x.shape
        x = x.flatten(2).transpose(1, 2)
        x = self.norm(x)
 
        return x, H, W

class PyramidVisionTransformerImpr(nn.Module):
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
                 num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
                 attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
                 depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
        super().__init__()
        self.num_classes = num_classes
        self.depths = depths
 
        # patch_embed
        self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_chans=in_chans,
                                              embed_dim=embed_dims[0])
        self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0],
                                              embed_dim=embed_dims[1])
        self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1],
                                              embed_dim=embed_dims[2])
        self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2],
                                              embed_dim=embed_dims[3])
 
        # transformer encoder
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]  # stochastic depth decay rule
        cur = 0
        self.block1 = nn.ModuleList([Block(
            dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[0])
            for i in range(depths[0])])
        self.norm1 = norm_layer(embed_dims[0])
 
        cur += depths[0]
        self.block2 = nn.ModuleList([Block(
            dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[1])
            for i in range(depths[1])])
        self.norm2 = norm_layer(embed_dims[1])
 
        cur += depths[1]
        self.block3 = nn.ModuleList([Block(
            dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[2])
            for i in range(depths[2])])
        self.norm3 = norm_layer(embed_dims[2])
 
        cur += depths[2]
        self.block4 = nn.ModuleList([Block(
            dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
            drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
            sr_ratio=sr_ratios[3])
            for i in range(depths[3])])
        self.norm4 = norm_layer(embed_dims[3])
 
        # classification head
        # self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
 
        self.apply(self._init_weights)
 
        self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
 
    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if isinstance(m, nn.Linear) and m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)
        elif isinstance(m, nn.Conv2d):
            fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
            fan_out //= m.groups
            m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
            if m.bias is not None:
                m.bias.data.zero_()
 
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
            logger = 1
            #load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
 
    def reset_drop_path(self, drop_path_rate):
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
        cur = 0
        for i in range(self.depths[0]):
            self.block1[i].drop_path.drop_prob = dpr[cur + i]
 
        cur += self.depths[0]
        for i in range(self.depths[1]):
            self.block2[i].drop_path.drop_prob = dpr[cur + i]
 
        cur += self.depths[1]
        for i in range(self.depths[2]):
            self.block3[i].drop_path.drop_prob = dpr[cur + i]
 
        cur += self.depths[2]
        for i in range(self.depths[3]):
            self.block4[i].drop_path.drop_prob = dpr[cur + i]
 
    def freeze_patch_emb(self):
        self.patch_embed1.requires_grad = False
 
    @torch.jit.ignore
    def no_weight_decay(self):
        return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'}  # has pos_embed may be better
 
    def get_classifier(self):
        return self.head
 
    def reset_classifier(self, num_classes, global_pool=''):
        self.num_classes = num_classes
        self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
 
    # def _get_pos_embed(self, pos_embed, patch_embed, H, W):
    #     if H * W == self.patch_embed1.num_patches:
    #         return pos_embed
    #     else:
    #         return F.interpolate(
    #             pos_embed.reshape(1, patch_embed.H, patch_embed.W, -1).permute(0, 3, 1, 2),
    #             size=(H, W), mode="bilinear").reshape(1, -1, H * W).permute(0, 2, 1)
 
    def forward_features(self, x):
        B = x.shape[0]
        outs = []
 
        # stage 1
        x, H, W = self.patch_embed1(x)
        for i, blk in enumerate(self.block1):
            x = blk(x, H, W)
        x = self.norm1(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        # stage 2
        x, H, W = self.patch_embed2(x)
        for i, blk in enumerate(self.block2):
            x = blk(x, H, W)
        x = self.norm2(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        # stage 3
        x, H, W = self.patch_embed3(x)
        for i, blk in enumerate(self.block3):
            x = blk(x, H, W)
        x = self.norm3(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        # stage 4
        x, H, W = self.patch_embed4(x)
        for i, blk in enumerate(self.block4):
            x = blk(x, H, W)
        x = self.norm4(x)
        x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
        outs.append(x)
 
        return outs
 
        # return x.mean(dim=1)
 
    def forward(self, x):
        x = self.forward_features(x)
        # x = self.head(x)
 
        return x

class DWConv(nn.Module):
    def __init__(self, dim=768):
        super(DWConv, self).__init__()
        self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
 
    def forward(self, x, H, W):
        B, N, C = x.shape
        x = x.transpose(1, 2).view(B, C, H, W)
        x = self.dwconv(x)
        x = x.flatten(2).transpose(1, 2)
 
        return x

def _conv_filter(state_dict, patch_size=16):
    """ convert patch embedding weight from manual patchify + linear proj to conv"""
    out_dict = {}
    for k, v in state_dict.items():
        if 'patch_embed.proj.weight' in k:
            v = v.reshape((v.shape[0], 3, patch_size, patch_size))
        out_dict[k] = v
 
    return out_dict

class pvt_v2_b0(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b0, self).__init__(
            patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b1(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b1, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b2(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b2, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b3(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b3, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 
class pvt_v2_b4(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b4, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)

class pvt_v2_b5(PyramidVisionTransformerImpr):
    def __init__(self, **kwargs):
        super(pvt_v2_b5, self).__init__(
            patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
            qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
            drop_rate=0.0, drop_path_rate=0.1)
 

P2检测头无需代码


五、修改步骤

U-Net V2修改步骤:

P2检测头详解:


六、yaml模型文件

6.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-UNetV2-p2.yaml

rtdetr.yaml 中的内容复制到 rtdetr-UNetV2-p2.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 替换成 pvt_v2_b1 ,并加入 p2 检测头。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, pvt_v2_b0, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (16), fpn_blocks.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 17
  - [1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 18 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 19 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (20), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 21, downsample_convs.0
  - [[-1, 16], 1, Concat, [1]]  # 22 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (23), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 24, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 25 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (26), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 27, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 28 cat Y5
  - [-1, 3, RepC3, [256]]    # F5 (29), pan_blocks.1

  - [[20, 23, 26, 29], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)


七、成功运行结果

分别打印网络模型可以看到 UNetV2模块 已经加入到模型中,并可以进行训练了。

rtdetr-UNetV2-p2

rtdetr-UNetV2-p2 summary: 624 layers, 27,147,651 parameters, 27,147,651 gradients, 247.4 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1   3409760  pvt_v2_b0                                    []                            
  1                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1, None, 1, 1, False]
  2                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  3                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  4                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  5                   3  1     41472  ultralytics.nn.modules.conv.Conv             [160, 256, 1, 1, None, 1, 1, False]
  6            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
  7                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
  8                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  9                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 10                   2  1     16896  ultralytics.nn.modules.conv.Conv             [64, 256, 1, 1, None, 1, 1, False]
 11            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   1  1      8704  ultralytics.nn.modules.conv.Conv             [32, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 24             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 25                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 26    [20, 23, 26, 29]  1   7517987  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256, 256]]     
rtdetr-UNetV2-p2 summary: 624 layers, 27,147,651 parameters, 27,147,651 gradients, 247.4 GFLOPs