学习资源站

RT-DETR改进策略【注意力机制篇】2024PPA并行补丁感知注意模块,提高小目标关注度-

RT-DETR改进策略【注意力机制篇】| 2024 PPA 并行补丁感知注意模块,提高小目标关注度

一、本文介绍

本文记录的是 利用 PPA (并行补丁感知注意模块) 改进 RT-DETR 检测精度 ,详细说明了优化原因,注意事项等。原论文在红外 小目标检测 任务中,小目标在多次下采样操作中容易丢失关键信息。 PPA模块 通过替代编码器和解码器基本组件中的传统卷积操作,更好地保留小目标的重要信息。



二、PPA 介绍

HCF-Net: Hierarchical Context Fusion Network for Infrared Small Object Detection

2.1 原理

2.1.1 多分支特征提取原理

采用多分支特征提取策略,通过不同分支提取不同尺度和层次的特征。利用局部、全局和串行卷积分支,对输入特征张量进行处理。通过控制 patch size参数实现局部和全局分支的区分,计算非重叠 patch之间的注意力矩阵,实现局部和全局特征提取与交互。在特征提取过程中,还通过一系列操作对特征进行选择和调整权重,最终将三个分支的结果求和得到融合后的特征。

2.1.2 特征融合和注意力原理

在多分支特征提取后,利用注意力机制进行自适应特征增强。注意力模块包括高效的通道注意力和空间注意力组件。首先通过一维通道注意力图和二维空间注意力图对特征进行依次处理,然后经过一系列激活函数、批归一化和 dropout等操作,得到最终输出。

2.2 结构

2.2.1 多分支特征提取结构

  • 主要由多分支融合和注意力机制两部分组成。多分支融合部分包括 patch - aware和串联卷积。patch - aware中的参数 p 设置为2和4,分别代表局部和全局分支。对于输入特征张量 F ,先通过点式卷积调整得到 F' ,然后通过三个分支分别计算 F_local F_global F_conv ,最后将这三个结果求和得到 \tilde{F}

2.2.2 特征融合和注意力结构

  • 包括通道注意力和空间注意力组件。 \tilde{F} 依次经过一维通道注意力图 M_c 和二维空间注意力图 M_s 的处理,通过元素级乘法和后续的激活函数、批归一化等操作,最终得到PPA的输出 F''

在这里插入图片描述

  1. 优势
    • 多分支特征提取优势 :通过多分支策略能够捕获对象的多尺度特征,提高了小目标检测的准确性。不同分支可以关注到不同尺度和层次的信息,避免了单一尺度下可能丢失的小目标特征。
    • 特征融合和注意力优势 :利用注意力机制可以自适应地增强特征,突出小目标的关键信息。通道注意力和空间注意力的结合能够更好地选择和聚焦于与小目标相关的特征,提高网络对小目标的表征能力。

论文:h ttps://arxiv.org/pdf/2403.10778
源码: https://github.com/zhengshuchen/HCFNet

三、PPA 的实现代码

PPA 模块 的实现代码如下:


import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from ultralytics.nn.modules.conv import LightConv
from ultralytics.utils.torch_utils import fuse_conv_and_bn

class SpatialAttentionModule(nn.Module):
    def __init__(self):
        super(SpatialAttentionModule, self).__init__()
        self.conv2d = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avgout = torch.mean(x, dim=1, keepdim=True)
        maxout, _ = torch.max(x, dim=1, keepdim=True)
        out = torch.cat([avgout, maxout], dim=1)
        out = self.sigmoid(self.conv2d(out))
        return out * x

class PPA(nn.Module):
    def __init__(self, in_features, filters) -> None:
        super().__init__()

        self.skip = conv_block(in_features=in_features,
                               out_features=filters,
                               kernel_size=(1, 1),
                               padding=(0, 0),
                               norm_type='bn',
                               activation=False)
        self.c1 = conv_block(in_features=in_features,
                             out_features=filters,
                             kernel_size=(3, 3),
                             padding=(1, 1),
                             norm_type='bn',
                             activation=True)
        self.c2 = conv_block(in_features=filters,
                             out_features=filters,
                             kernel_size=(3, 3),
                             padding=(1, 1),
                             norm_type='bn',
                             activation=True)
        self.c3 = conv_block(in_features=filters,
                             out_features=filters,
                             kernel_size=(3, 3),
                             padding=(1, 1),
                             norm_type='bn',
                             activation=True)
        self.sa = SpatialAttentionModule()
        self.cn = ECA(filters)
        self.lga2 = LocalGlobalAttention(filters, 2)
        self.lga4 = LocalGlobalAttention(filters, 4)

        self.bn1 = nn.BatchNorm2d(filters)
        self.drop = nn.Dropout2d(0.1)
        self.relu = nn.ReLU()

        self.gelu = nn.GELU()

    def forward(self, x):
        x_skip = self.skip(x)
        x_lga2 = self.lga2(x_skip)
        x_lga4 = self.lga4(x_skip)
        x1 = self.c1(x)
        x2 = self.c2(x1)
        x3 = self.c3(x2)
        x = x1 + x2 + x3 + x_skip + x_lga2 + x_lga4
        x = self.cn(x)
        x = self.sa(x)
        x = self.drop(x)
        x = self.bn1(x)
        x = self.relu(x)
        return x

class LocalGlobalAttention(nn.Module):
    def __init__(self, output_dim, patch_size):
        super().__init__()
        self.output_dim = output_dim
        self.patch_size = patch_size
        self.mlp1 = nn.Linear(patch_size * patch_size, output_dim // 2)
        self.norm = nn.LayerNorm(output_dim // 2)
        self.mlp2 = nn.Linear(output_dim // 2, output_dim)
        self.conv = nn.Conv2d(output_dim, output_dim, kernel_size=1)
        self.prompt = torch.nn.parameter.Parameter(torch.randn(output_dim, requires_grad=True))
        self.top_down_transform = torch.nn.parameter.Parameter(torch.eye(output_dim), requires_grad=True)

    def forward(self, x):
        x = x.permute(0, 2, 3, 1)
        B, H, W, C = x.shape
        P = self.patch_size

        # Local branch
        local_patches = x.unfold(1, P, P).unfold(2, P, P)  # (B, H/P, W/P, P, P, C)
        local_patches = local_patches.reshape(B, -1, P * P, C)  # (B, H/P*W/P, P*P, C)
        local_patches = local_patches.mean(dim=-1)  # (B, H/P*W/P, P*P)

        local_patches = self.mlp1(local_patches)  # (B, H/P*W/P, input_dim // 2)
        local_patches = self.norm(local_patches)  # (B, H/P*W/P, input_dim // 2)
        local_patches = self.mlp2(local_patches)  # (B, H/P*W/P, output_dim)

        local_attention = F.softmax(local_patches, dim=-1)  # (B, H/P*W/P, output_dim)
        local_out = local_patches * local_attention  # (B, H/P*W/P, output_dim)

        cos_sim = F.normalize(local_out, dim=-1) @ F.normalize(self.prompt[None, ..., None], dim=1)  # B, N, 1
        mask = cos_sim.clamp(0, 1)
        local_out = local_out * mask
        local_out = local_out @ self.top_down_transform

        # Restore shapes
        local_out = local_out.reshape(B, H // P, W // P, self.output_dim)  # (B, H/P, W/P, output_dim)
        local_out = local_out.permute(0, 3, 1, 2)
        local_out = F.interpolate(local_out, size=(H, W), mode='bilinear', align_corners=False)
        output = self.conv(local_out)

        return output

class ECA(nn.Module):
    def __init__(self, in_channel, gamma=2, b=1):
        super(ECA, self).__init__()
        k = int(abs((math.log(in_channel, 2) + b) / gamma))
        kernel_size = k if k % 2 else k + 1
        padding = kernel_size // 2
        self.pool = nn.AdaptiveAvgPool2d(output_size=1)
        self.conv = nn.Sequential(
            nn.Conv1d(in_channels=1, out_channels=1, kernel_size=kernel_size, padding=padding, bias=False),
            nn.Sigmoid()
        )

    def forward(self, x):
        out = self.pool(x)
        out = out.view(x.size(0), 1, x.size(1))
        out = self.conv(out)
        out = out.view(x.size(0), x.size(1), 1, 1)
        return out * x

class conv_block(nn.Module):
    def __init__(self,
                 in_features,
                 out_features,
                 kernel_size=(3, 3),
                 stride=(1, 1),
                 padding=(1, 1),
                 dilation=(1, 1),
                 norm_type='bn',
                 activation=True,
                 use_bias=True,
                 groups=1
                 ):
        super().__init__()
        self.conv = nn.Conv2d(in_channels=in_features,
                              out_channels=out_features,
                              kernel_size=kernel_size,
                              stride=stride,
                              padding=padding,
                              dilation=dilation,
                              bias=use_bias,
                              groups=groups)

        self.norm_type = norm_type
        self.act = activation

        if self.norm_type == 'gn':
            self.norm = nn.GroupNorm(32 if out_features >= 32 else out_features, out_features)
        if self.norm_type == 'bn':
            self.norm = nn.BatchNorm2d(out_features)
        if self.act:
            # self.relu = nn.GELU()
            self.relu = nn.ReLU(inplace=False)

    def forward(self, x):
        x = self.conv(x)
        if self.norm_type is not None:
            x = self.norm(x)
        if self.act:
            x = self.relu(x)
        return x

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class HGBlock_PPA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = PPA(c2, c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y


四、创新模块

4.1 改进点⭐

模块改进方法 :直接加入 PPA 第五节讲解添加步骤 )。

PPA 模块加入如下:

在这里插入图片描述

4.2 改进点⭐

模块改进方法 :基于 PPA模块 HGBlock 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 HGBlock模块 进行改进,并将 PPA 在加入到 HGBlock 模块中。

改进代码如下:

HGBlock 模块进行改进,加入 PPA模块 ,并重命名为 HGBlock_PPA

class HGBlock_PPA(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = PPA(c2, c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: PPA HGBlock_PPA


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 PPA.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .PPA import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 PPA HGBlock_PPA 模块

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-PPA.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-PPA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的部分 HGBlock模块 替换成 PPA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, PPA, [1024]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_PPA.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_PPA.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的 HGBlock模块 替换成 HGBlock_PPA模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock_PPA, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 PPA HGBlock_PPA 已经加入到模型中,并可以进行训练了。

rtdetr-l-PPA

rtdetr-l-PPA summary: 854 layers, 233,658,931 parameters, 233,658,931 gradients, 254.3 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6 207821424  ultralytics.nn.AddModules.PPA.PPA            [1024, 1024]                  
 10                  -1  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-PPA summary: 854 layers, 233,658,931 parameters, 233,658,931 gradients, 254.3 GFLOPs

rtdetr-l-HGBlock_PPA

rtdetr-l-HGBlock_PPA summary: 720 layers, 171,287,853 parameters, 171,287,853 gradients, 209.2 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6 145188202  ultralytics.nn.AddModules.PPA.HGBlock_PPA    [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_PPA summary: 720 layers, 171,287,853 parameters, 171,287,853 gradients, 209.2 GFLOPs