RT-DETR改进策略【Backbone/主干网络】| CVPR 2024 替换骨干为InceptionNeXt,将大核深度卷积分解为四个并行分支,平衡速度与精度
一、本文介绍
本文记录的是 基于InceptionNeXt的RT-DETR骨干网络改进方法研究 。
InceptionNeXt
提出了新颖的
Inception 深度卷积
,
将大核深度卷积分解为四个并行分支
,
有效提升计算效率并保持大感受野
。将
InceptionNeXt
应用到
RT-DETR
的骨干网络中,利用其独特的卷积结构,在处理图像时,
不仅能快速捕捉到图像的局部细节特征
,还能通过大感受野把握图像的整体信息,实现精度与效率的平衡优化 。
本文在
RT-DETR
的基础上配置了原论文中
inceptionnext_atto
,
inceptionnext_tiny
,
inceptionnext_small
,
inceptionnext_base
,
inceptionnext_base_384
五种模型,以满足不同的需求。
二、InceptionNeXt原理介绍
InceptionNeXt: When Inception Meets ConvNeXt
InceptionNeXt是一种新型的卷积神经网络,旨在解决大核卷积神经网络在速度和性能之间的平衡问题。它的设计出发点基于对现有模型的分析和改进需求,结构上有独特的创新,这些设计为模型带来了显著的优势。
2.1 设计出发点
CNN通过改进训练技术和采用大核卷积等方式,证明了其仍然具有竞争力。但大核深度卷积存在速度瓶颈,尽管其FLOPs较小,但内存访问成本高,限制了模型在GPU等强大计算设备上的运行效率。例如,ConvNeXt-T与ResNet-50的FLOPs相似,但训练吞吐量仅为ResNet-50的约60%。
因此,如何在保持性能的同时加速大核CNN成为一个挑战,这就是InceptionNeXt模型设计的出发点。
2.2 结构
InceptionNeXt基于MetaNeXt block构建,MetaNeXt是从ConvNeXt抽象出来的通用块。
在MetaNeXt block中,输入首先经过一个TokenMixer(在ConvNeXt中为深度卷积)进行空间信息交互,然后进行归一化,再通过MLP模块处理,最后采用快捷连接。InceptionNeXt的关键创新在于Inception深度卷积,它将大核深度卷积沿通道维度分解为四个并行分支,包括一个小正方形内核(3×3)、两个正交带状内核(1×k和k×1)和一个恒等映射。通过这种分解,在保持大感受野的同时提高了计算效率。
整个InceptionNeXt模型采用4阶段框架,与ConvNeXt类似,但在一些细节上有所不同,如在第4阶段使用不同的MLP比例,并将节省的参数移到分类器中。
2.3 优势
InceptionNeXt在速度和准确性之间实现了更好的平衡。与ConvNeXt相比,InceptionNeXt-T的训练吞吐量提高了1.6倍,同时在ImageNet-1K上的top-1准确率提高了0.2%,兼具ResNet-50的速度和ConvNeXt-T的准确性。
在语义分割任务中,InceptionNeXt也表现出色,使用UperNet和Semantic FPN方法时,均优于Swin、ConvNeXt等其他骨干网络。消融实验表明,Inception深度卷积的各个分支都对模型性能有重要贡献,移除任何一个分支都会导致性能下降。
此外,InceptionNeXt在不同架构下都能表现良好,具有良好的泛化能力。
论文: https://arxiv.org/pdf/2303.16900
源码: https://github.com/sail-sg/poolformer
三、InceptionNeXt的实现代码
InceptionNeXt
的实现代码如下:
"""
InceptionNeXt implementation, paper: https://arxiv.org/abs/2303.16900
Some code is borrowed from timm: https://github.com/huggingface/pytorch-image-models
"""
from functools import partial
import torch
import torch.nn as nn
import numpy as np
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models import checkpoint_seq
from timm.layers import trunc_normal_, DropPath, to_2tuple
__all__ = ['inceptionnext_atto', 'inceptionnext_tiny', 'inceptionnext_small', 'inceptionnext_base', 'inceptionnext_base_384']
class InceptionDWConv2d(nn.Module):
""" Inception depthweise convolution
"""
def __init__(self, in_channels, square_kernel_size=3, band_kernel_size=11, branch_ratio=0.125):
super().__init__()
gc = int(in_channels * branch_ratio) # channel numbers of a convolution branch
self.dwconv_hw = nn.Conv2d(gc, gc, square_kernel_size, padding=square_kernel_size//2, groups=gc)
self.dwconv_w = nn.Conv2d(gc, gc, kernel_size=(1, band_kernel_size), padding=(0, band_kernel_size//2), groups=gc)
self.dwconv_h = nn.Conv2d(gc, gc, kernel_size=(band_kernel_size, 1), padding=(band_kernel_size//2, 0), groups=gc)
self.split_indexes = (in_channels - 3 * gc, gc, gc, gc)
def forward(self, x):
x_id, x_hw, x_w, x_h = torch.split(x, self.split_indexes, dim=1)
return torch.cat(
(x_id, self.dwconv_hw(x_hw), self.dwconv_w(x_w), self.dwconv_h(x_h)),
dim=1,
)
class ConvMlp(nn.Module):
""" MLP using 1x1 convs that keeps spatial dims
copied from timm: https://github.com/huggingface/pytorch-image-models/blob/v0.6.11/timm/models/layers/mlp.py
"""
def __init__(
self, in_features, hidden_features=None, out_features=None, act_layer=nn.ReLU,
norm_layer=None, bias=True, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
bias = to_2tuple(bias)
self.fc1 = nn.Conv2d(in_features, hidden_features, kernel_size=1, bias=bias[0])
self.norm = norm_layer(hidden_features) if norm_layer else nn.Identity()
self.act = act_layer()
self.drop = nn.Dropout(drop)
self.fc2 = nn.Conv2d(hidden_features, out_features, kernel_size=1, bias=bias[1])
def forward(self, x):
x = self.fc1(x)
x = self.norm(x)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
return x
class MlpHead(nn.Module):
""" MLP classification head
"""
def __init__(self, dim, num_classes=1000, mlp_ratio=3, act_layer=nn.GELU,
norm_layer=partial(nn.LayerNorm, eps=1e-6), drop=0., bias=True):
super().__init__()
hidden_features = int(mlp_ratio * dim)
self.fc1 = nn.Linear(dim, hidden_features, bias=bias)
self.act = act_layer()
self.norm = norm_layer(hidden_features)
self.fc2 = nn.Linear(hidden_features, num_classes, bias=bias)
self.drop = nn.Dropout(drop)
def forward(self, x):
x = x.mean((2, 3)) # global average pooling
x = self.fc1(x)
x = self.act(x)
x = self.norm(x)
x = self.drop(x)
x = self.fc2(x)
return x
class MetaNeXtBlock(nn.Module):
""" MetaNeXtBlock Block
Args:
dim (int): Number of input channels.
drop_path (float): Stochastic depth rate. Default: 0.0
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(
self,
dim,
token_mixer=InceptionDWConv2d,
norm_layer=nn.BatchNorm2d,
mlp_layer=ConvMlp,
mlp_ratio=4,
act_layer=nn.GELU,
ls_init_value=1e-6,
drop_path=0.,
):
super().__init__()
self.token_mixer = token_mixer(dim)
self.norm = norm_layer(dim)
self.mlp = mlp_layer(dim, int(mlp_ratio * dim), act_layer=act_layer)
self.gamma = nn.Parameter(ls_init_value * torch.ones(dim)) if ls_init_value else None
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
def forward(self, x):
shortcut = x
x = self.token_mixer(x)
x = self.norm(x)
x = self.mlp(x)
if self.gamma is not None:
x = x.mul(self.gamma.reshape(1, -1, 1, 1))
x = self.drop_path(x) + shortcut
return x
class MetaNeXtStage(nn.Module):
def __init__(
self,
in_chs,
out_chs,
ds_stride=2,
depth=2,
drop_path_rates=None,
ls_init_value=1.0,
act_layer=nn.GELU,
norm_layer=None,
mlp_ratio=4,
):
super().__init__()
self.grad_checkpointing = False
if ds_stride > 1:
self.downsample = nn.Sequential(
norm_layer(in_chs),
nn.Conv2d(in_chs, out_chs, kernel_size=ds_stride, stride=ds_stride),
)
else:
self.downsample = nn.Identity()
drop_path_rates = drop_path_rates or [0.] * depth
stage_blocks = []
for i in range(depth):
stage_blocks.append(MetaNeXtBlock(
dim=out_chs,
drop_path=drop_path_rates[i],
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
mlp_ratio=mlp_ratio,
))
in_chs = out_chs
self.blocks = nn.Sequential(*stage_blocks)
def forward(self, x):
x = self.downsample(x)
if self.grad_checkpointing and not torch.jit.is_scripting():
x = checkpoint_seq(self.blocks, x)
else:
x = self.blocks(x)
return x
class MetaNeXt(nn.Module):
r""" MetaNeXt
A PyTorch impl of : `InceptionNeXt: When Inception Meets ConvNeXt` - https://arxiv.org/pdf/2203.xxxxx.pdf
Args:
in_chans (int): Number of input image channels. Default: 3
num_classes (int): Number of classes for classification head. Default: 1000
depths (tuple(int)): Number of blocks at each stage. Default: (3, 3, 9, 3)
dims (tuple(int)): Feature dimension at each stage. Default: (96, 192, 384, 768)
token_mixers: Token mixer function. Default: nn.Identity
norm_layer: Normalziation layer. Default: nn.BatchNorm2d
act_layer: Activation function for MLP. Default: nn.GELU
mlp_ratios (int or tuple(int)): MLP ratios. Default: (4, 4, 4, 3)
head_fn: classifier head
drop_rate (float): Head dropout rate
drop_path_rate (float): Stochastic depth rate. Default: 0.
ls_init_value (float): Init value for Layer Scale. Default: 1e-6.
"""
def __init__(
self,
in_chans=3,
num_classes=1000,
depths=(3, 3, 9, 3),
dims=(96, 192, 384, 768),
token_mixers=nn.Identity,
norm_layer=nn.BatchNorm2d,
act_layer=nn.GELU,
mlp_ratios=(4, 4, 4, 3),
head_fn=MlpHead,
drop_rate=0.,
drop_path_rate=0.,
ls_init_value=1e-6,
**kwargs,
):
super().__init__()
num_stage = len(depths)
if not isinstance(token_mixers, (list, tuple)):
token_mixers = [token_mixers] * num_stage
if not isinstance(mlp_ratios, (list, tuple)):
mlp_ratios = [mlp_ratios] * num_stage
self.num_classes = num_classes
self.drop_rate = drop_rate
self.stem = nn.Sequential(
nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
norm_layer(dims[0])
)
self.stages = nn.Sequential()
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)]
stages = []
prev_chs = dims[0]
# feature resolution stages, each consisting of multiple residual blocks
for i in range(num_stage):
out_chs = dims[i]
stages.append(MetaNeXtStage(
prev_chs,
out_chs,
ds_stride=2 if i > 0 else 1,
depth=depths[i],
drop_path_rates=dp_rates[i],
ls_init_value=ls_init_value,
act_layer=act_layer,
norm_layer=norm_layer,
mlp_ratio=mlp_ratios[i],
))
prev_chs = out_chs
self.stages = nn.Sequential(*stages)
self.num_features = prev_chs
self.apply(self._init_weights)
self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
@torch.jit.ignore
def set_grad_checkpointing(self, enable=True):
for s in self.stages:
s.grad_checkpointing = enable
@torch.jit.ignore
def no_weight_decay(self):
return {'norm'}
def forward(self, x):
input_size = x.size(2)
scale = [4, 8, 16, 32]
features = [None, None, None, None]
x = self.stem(x)
features[scale.index(input_size // x.size(2))] = x
for idx, layer in enumerate(self.stages):
x = layer(x)
if input_size // x.size(2) in scale:
features[scale.index(input_size // x.size(2))] = x
return features
def _init_weights(self, m):
if isinstance(m, (nn.Conv2d, nn.Linear)):
trunc_normal_(m.weight, std=.02)
if m.bias is not None:
nn.init.constant_(m.bias, 0)
def _cfg(url='', **kwargs):
return {
'url': url,
'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': (7, 7),
'crop_pct': 0.875, 'interpolation': 'bicubic',
'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
'first_conv': 'stem.0', 'classifier': 'head.fc',
**kwargs
}
def update_weight(model_dict, weight_dict):
idx, temp_dict = 0, {}
for k, v in weight_dict.items():
if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
temp_dict[k] = v
idx += 1
model_dict.update(temp_dict)
print(f'loading weights... {idx}/{len(model_dict)} items')
return model_dict
default_cfgs = dict(
inceptionnext_atto=_cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_atto.pth',
),
inceptionnext_tiny=_cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_tiny.pth',
),
inceptionnext_small=_cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_small.pth',
),
inceptionnext_base=_cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base.pth',
),
inceptionnext_base_384=_cfg(
url='https://github.com/sail-sg/inceptionnext/releases/download/model/inceptionnext_base_384.pth',
input_size=(3, 384, 384), crop_pct=1.0,
),
)
def inceptionnext_atto(pretrained=False, **kwargs):
model = MetaNeXt(depths=(2, 2, 6, 2), dims=(40, 80, 160, 320),
token_mixers=partial(InceptionDWConv2d, band_kernel_size=9, branch_ratio=0.25),
**kwargs
)
model.default_cfg = default_cfgs['inceptionnext_atto']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(
url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
def inceptionnext_tiny(pretrained=False, **kwargs):
model = MetaNeXt(depths=(3, 3, 9, 3), dims=(96, 192, 384, 768),
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inceptionnext_tiny']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
def inceptionnext_small(pretrained=False, **kwargs):
model = MetaNeXt(depths=(3, 3, 27, 3), dims=(96, 192, 384, 768),
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inceptionnext_small']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
def inceptionnext_base(pretrained=False, **kwargs):
model = MetaNeXt(depths=(3, 3, 27, 3), dims=(128, 256, 512, 1024),
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inceptionnext_base']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
def inceptionnext_base_384(pretrained=False, **kwargs):
model = MetaNeXt(depths=[3, 3, 27, 3], dims=[128, 256, 512, 1024],
mlp_ratios=[4, 4, 4, 3],
token_mixers=InceptionDWConv2d,
**kwargs
)
model.default_cfg = default_cfgs['inceptionnext_base_384']
if pretrained:
state_dict = torch.hub.load_state_dict_from_url(url=model.default_cfg['url'], map_location="cpu", check_hash=True)
model.load_state_dict(state_dict)
return model
if __name__ == '__main__':
model = inceptionnext_tiny(pretrained=False)
inputs = torch.randn((1, 3, 640, 640))
for i in model(inputs):
print(i.size())
四、修改步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
inceptionnext.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .inceptionnext import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要添加各模块类。
① 首先:导入模块
② 在BaseModel类的predict函数中,在如下两处位置中去掉
embed
参数:
③ 在BaseModel类的_predict_once函数,替换如下代码:
def _predict_once(self, x, profile=False, visualize=False):
"""
Perform a forward pass through the network.
Args:
x (torch.Tensor): The input tensor to the model.
profile (bool): Print the computation time of each layer if True, defaults to False.
visualize (bool): Save the feature maps of the model if True, defaults to False.
Returns:
(torch.Tensor): The last output of the model.
"""
y, dt = [], [] # outputs
for m in self.model:
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
return x
④ 将
RTDETRDetectionModel类
中的
predict函数
完整替换:
def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
"""
Perform a forward pass through the model.
Args:
x (torch.Tensor): The input tensor.
profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
batch (dict, optional): Ground truth data for evaluation. Defaults to None.
augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.
Returns:
(torch.Tensor): Model's output tensor.
"""
y, dt = [], [] # outputs
for m in self.model[:-1]: # except the head part
if m.f != -1: # if not from previous layer
x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
if profile:
self._profile_one_layer(m, x, dt)
if hasattr(m, 'backbone'):
x = m(x)
for _ in range(5 - len(x)):
x.insert(0, None)
for i_idx, i in enumerate(x):
if i_idx in self.save:
y.append(i)
else:
y.append(None)
# for i in x:
# if i is not None:
# print(i.size())
x = x[-1]
else:
x = m(x) # run
y.append(x if m.i in self.save else None) # save output
if visualize:
feature_visualization(x, m.type, m.i, save_dir=visualize)
head = self.model[-1]
x = head([y[j] for j in head.f], batch) # head inference
return x
⑤ 在
parse_model函数
如下位置替换如下代码:
if verbose:
LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10} {'module':<45}{'arguments':<30}")
ch = [ch]
layers, save, c2 = [], [], ch[-1] # layers, savelist, ch out
is_backbone = False
for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']): # from, number, module, args
try:
if m == 'node_mode':
m = d[m]
if len(args) > 0:
if args[0] == 'head_channel':
args[0] = int(d[args[0]])
t = m
m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m] # get module
except:
pass
for j, a in enumerate(args):
if isinstance(a, str):
with contextlib.suppress(ValueError):
try:
args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
except:
args[j] = a
替换后如下:
⑥ 在
parse_model
函数,添加如下代码。
elif m in {inceptionnext_atto, inceptionnext_tiny, inceptionnext_small, inceptionnext_base, inceptionnext_base_384,}:
m = m(*args)
c2 = m.channel
backbone = True
⑦ 在
parse_model函数
如下位置替换如下代码:
if isinstance(c2, list):
backbone = True
m_ = m
m_.backbone = True
else:
m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
t = str(m)[8:-2].replace('__main__.', '') # module type
m_.np = sum(x.numel() for x in m_.parameters()) # number params
m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t # attach index, 'from' index, type
if verbose:
LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m_.np:10.0f} {t:<45}{str(args):<30}') # print
save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
layers.append(m_)
if i == 0:
ch = []
if isinstance(c2, list):
ch.extend(c2)
for _ in range(5 - len(ch)):
ch.insert(0, 0)
else:
ch.append(c2)
return nn.Sequential(*layers), sorted(save)
⑧ 在
ultralytics\nn\autobackend.py
文件的
AutoBackend类
中的
forward函数
,完整替换如下代码:
def forward(self, im, augment=False, visualize=False):
"""
Runs inference on the YOLOv8 MultiBackend model.
Args:
im (torch.Tensor): The image tensor to perform inference on.
augment (bool): whether to perform data augmentation during inference, defaults to False
visualize (bool): whether to visualize the output predictions, defaults to False
Returns:
(tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
"""
b, ch, h, w = im.shape # batch, channel, height, width
if self.fp16 and im.dtype != torch.float16:
im = im.half() # to FP16
if self.nhwc:
im = im.permute(0, 2, 3, 1) # torch BCHW to numpy BHWC shape(1,320,192,3)
if self.pt or self.nn_module: # PyTorch
y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
elif self.jit: # TorchScript
y = self.model(im)
elif self.dnn: # ONNX OpenCV DNN
im = im.cpu().numpy() # torch to numpy
self.net.setInput(im)
y = self.net.forward()
elif self.onnx: # ONNX Runtime
im = im.cpu().numpy() # torch to numpy
y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
elif self.xml: # OpenVINO
im = im.cpu().numpy() # FP32
y = list(self.ov_compiled_model(im).values())
elif self.engine: # TensorRT
if self.dynamic and im.shape != self.bindings['images'].shape:
i = self.model.get_binding_index('images')
self.context.set_binding_shape(i, im.shape) # reshape if dynamic
self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
for name in self.output_names:
i = self.model.get_binding_index(name)
self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
s = self.bindings['images'].shape
assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
self.binding_addrs['images'] = int(im.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
y = [self.bindings[x].data for x in sorted(self.output_names)]
elif self.coreml: # CoreML
im = im[0].cpu().numpy()
im_pil = Image.fromarray((im * 255).astype('uint8'))
# im = im.resize((192, 320), Image.BILINEAR)
y = self.model.predict({'image': im_pil}) # coordinates are xywh normalized
if 'confidence' in y:
raise TypeError('Ultralytics only supports inference of non-pipelined CoreML models exported with '
f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export.")
# TODO: CoreML NMS inference handling
# from ultralytics.utils.ops import xywh2xyxy
# box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]]) # xyxy pixels
# conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
# y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
elif len(y) == 1: # classification model
y = list(y.values())
elif len(y) == 2: # segmentation model
y = list(reversed(y.values())) # reversed for segmentation models (pred, proto)
elif self.paddle: # PaddlePaddle
im = im.cpu().numpy().astype(np.float32)
self.input_handle.copy_from_cpu(im)
self.predictor.run()
y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
elif self.ncnn: # ncnn
mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
ex = self.net.create_extractor()
input_names, output_names = self.net.input_names(), self.net.output_names()
ex.input(input_names[0], mat_in)
y = []
for output_name in output_names:
mat_out = self.pyncnn.Mat()
ex.extract(output_name, mat_out)
y.append(np.array(mat_out)[None])
elif self.triton: # NVIDIA Triton Inference Server
im = im.cpu().numpy() # torch to numpy
y = self.model(im)
else: # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
im = im.cpu().numpy()
if self.saved_model: # SavedModel
y = self.model(im, training=False) if self.keras else self.model(im)
if not isinstance(y, list):
y = [y]
elif self.pb: # GraphDef
y = self.frozen_func(x=self.tf.constant(im))
if len(y) == 2 and len(self.names) == 999: # segments and names not defined
ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0) # index of protos, boxes
nc = y[ib].shape[1] - y[ip].shape[3] - 4 # y = (1, 160, 160, 32), (1, 116, 8400)
self.names = {i: f'class{i}' for i in range(nc)}
else: # Lite or Edge TPU
details = self.input_details[0]
integer = details['dtype'] in (np.int8, np.int16) # is TFLite quantized int8 or int16 model
if integer:
scale, zero_point = details['quantization']
im = (im / scale + zero_point).astype(details['dtype']) # de-scale
self.interpreter.set_tensor(details['index'], im)
self.interpreter.invoke()
y = []
for output in self.output_details:
x = self.interpreter.get_tensor(output['index'])
if integer:
scale, zero_point = output['quantization']
x = (x.astype(np.float32) - zero_point) * scale # re-scale
if x.ndim > 2: # if task is not classification
# Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
# xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
x[:, [0, 2]] *= w
x[:, [1, 3]] *= h
y.append(x)
# TF segment fixes: export is reversed vs ONNX export and protos are transposed
if len(y) == 2: # segment with (det, proto) output order reversed
if len(y[1].shape) != 4:
y = list(reversed(y)) # should be y = (1, 116, 8400), (1, 160, 160, 32)
y[1] = np.transpose(y[1], (0, 3, 1, 2)) # should be y = (1, 116, 8400), (1, 32, 160, 160)
y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]
# for x in y:
# print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape) # debug shapes
if isinstance(y, (list, tuple)):
return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
else:
return self.from_numpy(y)
至此就修改完成了,可以配置模型开始训练了
五、yaml模型文件
5.1 模型改进⭐
在代码配置完成后,配置模型的YAML文件。
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-inceptionnext.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-inceptionnext.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
替换成
inceptionnext_tiny
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, inceptionnext_tiny, []] # 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5 input_proj.2
- [-1, 1, AIFI, [1024, 8]] # 6
- [-1, 1, Conv, [256, 1, 1]] # 7, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9 input_proj.1
- [[-2, -1], 1, Concat, [1]] # 10
- [-1, 3, RepC3, [256]] # 11, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 12, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
- [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 15 cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
- [[-1, 12], 1, Concat, [1]] # 18 cat Y4
- [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
- [[-1, 7], 1, Concat, [1]] # 21 cat Y5
- [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1
- [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
六、成功运行结果
分别打印网络模型可以看到
inceptionnext_tiny
已经加入到模型中,并可以进行训练了。
rtdetr-inceptionnext :
rtdetr-inceptionnext summary: 627 layers, 42,655,611 parameters, 42,655,611 gradients, 129.7 GFLOPs
from n params module arguments
0 -1 1 23974296 inceptionnext_tiny []
1 -1 1 197120 ultralytics.nn.modules.conv.Conv [768, 256, 1, 1, None, 1, 1, False]
2 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
3 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
4 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
5 3 1 98816 ultralytics.nn.modules.conv.Conv [384, 256, 1, 1, None, 1, 1, False]
6 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
7 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
8 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
10 2 1 49664 ultralytics.nn.modules.conv.Conv [192, 256, 1, 1, None, 1, 1, False]
11 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
12 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
13 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
14 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
15 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
16 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
17 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
18 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
19 [16, 19, 22] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-inceptionnext summary: 627 layers, 42,655,611 parameters, 42,655,611 gradients, 129.7 GFLOPs