学习资源站

RT-DETR改进策略【卷积层】引入注意力卷积模块RFAConv,关注感受野空间特征助力RT-DETR精度提升-

RT-DETR改进策略【卷积层】| 引入注意力卷积模块RFAConv,关注感受野空间特征 助力RT-DETR精度提升

一、本文介绍

本文记录的是 利用 RFAConv 优化 RT-DETR 的目标检测网络模型 。标准卷积操作和空间注意力机制虽能解决一定的参数共享问题, 但在大尺寸卷积核上应用注意力仍然存在缺陷,未充分考虑卷积核参数共享问题以及感受野中各特征的重要性 。而 RFAConv 的出现 旨在更全面地解决卷积核参数共享问题,关注感受野空间特征 。本文利用 RFAConv 改进 RT-DETR ,并设计了不同的网络模型进行 二次创新 ,以最大限度的发挥 RFAConv 的性能,精准有效的提高模型精度。



二、RFAConv介绍

RFAConv: Innovating Spatial Attention and Standard Convolutional Operation

RFAConv:创新空间注意力和标准卷积运算

2.1 出发点

  • 解决卷积核参数共享问题 :分析标准卷积操作和现有空间注意力机制后,发现空间注意力机制虽能解决一定的参数共享问题,但对于大尺寸卷积核存在局限。 RFAConv 旨在更全面地解决卷积核参数共享问题。
  • 关注感受野空间特征 :现有空间注意力机制如CBAM和CA仅关注空间特征,未充分考虑卷积核参数共享问题以及感受野中各特征的重要性。 RFAConv 的设计出发点是关注感受野空间特征,以提升网络性能。

2.2 原理

2.2.1 感受野空间特征的定义与生成

感受野空间特征是针对卷积核设计的,根据卷积核大小动态生成。以3×3卷积核为例,它由非重叠滑动窗口组成,每个窗口代表一个感受野滑块。

在这里插入图片描述

2.2.2 基于感受野空间特征的注意力计算

  • 首先利用 Group Conv 快速提取感受野空间特征,然后通过 AvgPool 聚合全局信息,接着使用1×1组卷积操作交互信息,最后用 softmax 强调感受野特征内各特征的重要性。计算过程可表示为 F = S o f t m a x ( g 1 × 1 ( A v g P o o l ( X ) ) ) × R e L U ( N o r m ( g k × k ( X ) ) ) = A r f × F r f F = Softmax(g^{1 × 1}(AvgPool(X)))× ReLU(Norm(g^{k × k}(X)))=A_{rf}×F_{rf} F = S o f t ma x ( g 1 × 1 ( A vg P oo l ( X ))) × R e LU ( N or m ( g k × k ( X ))) = A r f × F r f
  • 与CBAM和CA不同, RFA 能够为每个感受野特征生成注意力图,从而解决了卷积核参数共享问题,并突出了感受野滑块内不同特征的重要性。

2.3 结构

  • 整体结构 :以3×3卷积核为例,RFAConv的整体结构包括输入特征图经过快速提取感受野空间特征(如Group Conv)、信息聚合(AvgPool)、信息交互(1×1组卷积)和特征重要性强调(softmax)等操作,最终得到注意力图与变换后的感受野空间特征相乘的结果。
  • 与其他模块的关系 RFAConv 可视为一个轻量级的即插即用模块,它所设计的卷积操作可以替代标准卷积,与卷积操作紧密结合,相互依赖以提升网络性能。同时,基于RFA的思想还设计了升级版本的CBAM(RFCBAM)和CA(RFCA),其结构也与RFAConv类似,都注重感受野空间特征,在提取特征信息时使用特定的卷积操作(如对于RFCBAM和RFCA,最终使用 k × k k×k k × k 且步长 = k =k = k 的卷积操作)。

在这里插入图片描述

2.4 优势

  • 性能提升
    • 在分类任务中,如在ImageNet - 1k数据集上的实验,RFAConv替换ResNet18和ResNet34的部分卷积操作后,仅增加少量参数和计算开销,就显著提高了识别结果。例如ResNet18 - RFAConv相比原始模型仅增加0.16M参数和0.09G计算开销,TOP1和TOP5准确率分别提高1.64%和1.24%。
    • 在对象检测任务中,在COCO2017和VOC7 + 12数据集上的实验表明,使用 RFAConv 替换部分卷积操作,网络的检测结果显著提升,同时参数和计算开销增加较小。
    • 在语义分割任务中,在VOC2012数据集上的实验显示, RFAConv 构造的语义分割网络相比原始模型有更好的结果。
  • 解决参数共享问题 :通过关注感受野空间特征, RFAConv 完全解决了卷积核参数共享问题,使得卷积操作不再依赖于共享参数,提高了网络对不同位置信息的敏感性。
  • 计算成本和参数增加可忽略 RFAConv 在提升网络性能的同时,带来的计算成本和参数增加几乎可以忽略不计,相比一些其他方法具有更好的性价比。

论文: https://arxiv.org/pdf/2304.03198
源码: https://github.com/Liuchen1997/RFAConv

三、RFAConv的实现代码

RFAConv模块 的实现代码如下:

from torch import nn
from einops import rearrange
import torch.nn.functional as F
 
class RFAConv(nn.Module):
    def __init__(self, in_channel, out_channel, kernel_size=3, stride=1):
        super().__init__()
        self.kernel_size = kernel_size
 
        self.get_weight = nn.Sequential(nn.AvgPool2d(kernel_size=kernel_size, padding=kernel_size // 2, stride=stride),
                                        nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=1,
                                                  groups=in_channel, bias=False))
        self.generate_feature = nn.Sequential(
            nn.Conv2d(in_channel, in_channel * (kernel_size ** 2), kernel_size=kernel_size, padding=kernel_size // 2,
                      stride=stride, groups=in_channel, bias=False),
            nn.BatchNorm2d(in_channel * (kernel_size ** 2)),
            nn.ReLU())
 
        self.conv = Conv(in_channel, out_channel, k=kernel_size, s=kernel_size, p=0)
 
    def forward(self, x):
        b, c = x.shape[0:2]
        weight = self.get_weight(x)
        h, w = weight.shape[2:]
        weighted = weight.view(b, c, self.kernel_size ** 2, h, w).softmax(2)  # b c*kernel**2,h,w ->  b c k**2 h w
        feature = self.generate_feature(x).view(b, c, self.kernel_size ** 2, h,
                                                w)  # b c*kernel**2,h,w ->  b c k**2 h w
        weighted_data = feature * weighted
        conv_data = rearrange(weighted_data, 'b c (n1 n2) h w -> b c (h n1) (w n2)', n1=self.kernel_size,
                              # b c k**2 h w ->  b c h*k w*k
                              n2=self.kernel_size)
        return self.conv(conv_data)

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = RFAConv(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_RFAConv(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)


四、创新模块

4.1 改进点1⭐

模块改进方法 :直接加入 RFAConv模块 第五节讲解添加步骤 )。

RFAConv模块 添加后如下:

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 RFAConv模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进,并将 RFAConv 在加入到 ResNetLayer 模块中。

改进代码如下:

首先添加如下代码改进 ResNetBlock 模块,并将 ResNetLayer 重命名为 ResNetLayer_RFAConv

 class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = RFAConv(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_RFAConv(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: RFAConv ResNetLayer_RFAConv


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 RFAConv.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .RFAConv import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 RFAConv ResNetLayer_RFAConv 模块

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本1

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-RFAConv.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-RFAConv.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中添加 RFAConv模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, RFAConv, [512]] # cm, c2, k, light, shortcut
  - [-1, 6, RFAConv, [512]]
  - [-1, 6, RFAConv, [512]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_RFAConv.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-resnet50-ResNetLayer_RFAConv.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的所有 ResNetLayer模块 替换成 ResNetLayer_RFAConv模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_RFAConv, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_RFAConv, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_RFAConv, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_RFAConv, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_RFAConv, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 RFAConv ResNetLayer_RFAConv 已经加入到模型中,并可以进行训练了。

rtdetr-l-RFAConv

rtdetr-l-RFAConv summary: 715 layers, 70,351,171 parameters, 70,351,171 gradients, 228.7 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6  14493696  ultralytics.nn.AddModules.RFAConv.RFAConv    [512, 512]                    
  6                  -1  6  14493696  ultralytics.nn.AddModules.RFAConv.RFAConv    [512, 512]                    
  7                  -1  6  14493696  ultralytics.nn.AddModules.RFAConv.RFAConv    [512, 512]                    
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-RFAConv summary: 715 layers, 70,351,171 parameters, 70,351,171 gradients, 228.7 GFLOPs

rtdetr-ResNetLayer_RFAConv

rtdetr-ResNetLayer_RFAConv summary: 705 layers, 83,409,699 parameters, 83,409,699 gradients, 240.7 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.RFAConv.ResNetLayer_RFAConv[3, 64, 1, True, 1]           
  1                  -1  1    629760  ultralytics.nn.AddModules.RFAConv.ResNetLayer_RFAConv[64, 64, 1, False, 3]         
  2                  -1  1   3372032  ultralytics.nn.AddModules.RFAConv.ResNetLayer_RFAConv[256, 128, 2, False, 4]       
  3                  -1  1  19847168  ultralytics.nn.AddModules.RFAConv.ResNetLayer_RFAConv[512, 256, 2, False, 6]       
  4                  -1  1  40296448  ultralytics.nn.AddModules.RFAConv.ResNetLayer_RFAConv[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_RFAConv summary: 705 layers, 83,409,699 parameters, 83,409,699 gradients, 240.7 GFLOPs