学习资源站

RT-DETR改进策略【注意力机制篇】NAM即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)_detr插入模块-

RT-DETR改进策略【注意力机制篇】| NAM 即插即用模块,重新优化通道和空间注意力(含HGBlock二次创新)

一、本文介绍

本文记录的是 基于NAM模块的RT-DETR目标检测改进方法研究 。 许多先前的研究专注于通过注意力操作捕获显著特征,但缺乏对权重贡献因素的考虑,而这些因素能够进一步抑制不重要的通道或像素。而本文利用 NAM 改进 RT-DETR 通过权重的贡献因素来改进注意力机制,提高模型精度。



二、NAM介绍

NAM: Normalization-based Attention Module

NAM(Normalization - based Attention Module) 注意力模块的设计的原理和优势如下:

2.1 NAM设计原理

  • NAM 采用了来自 CBAM(Convolutional Block Attention Module) 的模块集成方式,并重新设计了 通道 空间 注意力子模块。
  • 通道 注意力子模块中,使用了批归一化(Batch Normalization,BN)的缩放因子来衡量通道的方差,并表示其重要性。具体公式为: B o u t = B N ( B i n ) = γ B i n − μ B σ B 2 + ϵ + β B_{out } = BN(B_{in}) = \gamma \frac{B_{in} - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2} + \epsilon}} + \beta B o u t = BN ( B in ) = γ σ B 2 + ϵ B in μ B + β ,其中 μ B \mu_{B} μ B σ B \sigma_{B} σ B 分别是小批量 B B B 的均值和标准差; γ \gamma γ β \beta β 是可训练的仿射变换参数(缩放和平移)。通道注意力子模块的输出特征 M c M_{c} M c 表示为: M c = s i g m o i d ( W γ ( B N ( F 1 ) ) ) M_{c} = sigmoid(W_{\gamma}(BN(F_{1}))) M c = s i g m o i d ( W γ ( BN ( F 1 ))) ,其中 γ \gamma γ 是每个通道的缩放因子,权重 W γ W_{\gamma} W γ 通过 W γ = γ i / ∑ j = 0 γ j W_{\gamma} = \gamma_{i} / \sum_{j = 0} \gamma_{j} W γ = γ i / j = 0 γ j 获得。

在这里插入图片描述

  • 空间 维度上也应用了BN的缩放因子来测量像素的重要性,称为像素归一化。相应的空间注意力子模块的输出 M s M_{s} M s 表示为: M s = s i g m o i d ( W λ ( B N s ( F 2 ) ) ) M_{s} = sigmoid(W_{\lambda}(BN_{s}(F_{2}))) M s = s i g m o i d ( W λ ( B N s ( F 2 ))) ,其中 X X X 是缩放因子,权重 W λ W_{\lambda} W λ 通过 W λ = λ i / ∑ j = 0 λ j W_{\lambda} = \lambda_{i} / \sum_{j = 0} \lambda_{j} W λ = λ i / j = 0 λ j 获得。

在这里插入图片描述

  • 为了抑制不太显著的权重,在损失函数中添加了一个正则化项,具体公式为: L o s s = ∑ ( x , y ) l ( f ( x , W ) , y ) + p ∑ g ( γ ) + p ∑ g ( λ ) Loss = \sum_{(x, y)} l(f(x, W), y) + p \sum g(\gamma) + p \sum g(\lambda) L oss = ( x , y ) l ( f ( x , W ) , y ) + p g ( γ ) + p g ( λ ) ,其中 x x x 表示输入, y y y 是输出, W W W 代表网络权重, l ( ⋅ ) l(\cdot) l ( ) 是损失函数, g ( − ) g(-) g ( ) l 1 l_{1} l 1 范数惩罚函数, p p p 是平衡 g ( γ ) g(\gamma) g ( γ ) g ( λ ) g(\lambda) g ( λ ) 的惩罚项。

2.2 优势

  • 通过抑制不太显著的特征, NAM 更高效。
  • 与其他三种注意力机制(SE、BAM、CBAM)在ResNet和MobileNet上的比较表明, NAM 在单独使用通道或空间注意力时,性能优于其他四种注意力机制;在结合通道和空间注意力时,在具有相似计算复杂度的情况下,性能也更优。
  • 与CBAM相比, NAM 在通道注意力模块中显著减少了参数数量,在空间注意力模块中参数增加不显著,总体上参数更少。

论文: https://arxiv.org/pdf/2111.12419
源码: https://github.com/Christian-lyc/NAM

三、NAM的实现代码

NAM模块 的实现代码如下:

import torch
from torch import nn

from ultralytics.nn.modules.conv import LightConv

class Channel_Att(nn.Module):
    def __init__(self, channels, t=16):
        super(Channel_Att, self).__init__()
        self.channels = channels

        self.bn2 = nn.BatchNorm2d(self.channels, affine=True)

    def forward(self, x):
        residual = x
        x = self.bn2(x)
        weight_bn = self.bn2.weight.data.abs() / torch.sum(self.bn2.weight.data.abs())
        x = x.permute(0, 2, 3, 1).contiguous()
        x = torch.mul(weight_bn, x)
        x = x.permute(0, 3, 1, 2).contiguous()

        x = torch.sigmoid(x) * residual #

        return x

class NAM(nn.Module):
    def __init__(self, channels, out_channels=None, no_spatial=True):
        super(NAM, self).__init__()
        self.Channel_Att = Channel_Att(channels)

    def forward(self, x):
        x_out1=self.Channel_Att(x)

        return x_out1

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class HGBlock_NAM(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = NAM(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y


四、创新模块

4.1 改进点1

模块改进方法 1️⃣:直接加入 NAM模块
NAM模块 添加后如下:

在这里插入图片描述

注意❗:需要声明的模块名称为: NAM

4.2 改进点2⭐

模块改进方法 2️⃣:基于 NAM模块 HGBlock

📌 第二种改进方法是对 RT-DETR 中的 HGBlock模块 进行改进,在 C2f 提取特征后,利用 NAM 重新设计通道和空间注意力子模块,从而抑制不太显著的特征,并且在与 HGBlock 结合后,对于细节特征的提取更加敏感,提高模型性能。

改进代码如下:

class HGBlock_NAM(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = NAM(c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

注意❗:需要声明的模块名称为: HGBlock_NAM


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 NAM.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .NAM import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 NAM HGBlock_NAM 模块

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-NAM.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-NAM.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。
在骨干网络的深层添加 NAM模块 只需要填入一个参数,通道数,和前一层通道数一致 还需要注意的是,由于PAN+FPN的颈部模型结构存在,层之间的匹配也要记得修改,维度要匹配上

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 1, NAM, [1024]] # stage 4
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 18], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 13], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[22, 25, 28], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本二⭐

此处同样以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_NAM.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_NAM.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的部分 HGBlock模块 替换成 HGBlock_NAM模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_NAM, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_NAM, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock_NAM, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

分别打印网络模型可以看到 NAM模块 HGBlock_NAM 已经加入到模型中,并可以进行训练了。

rtdetr-l-NAM

rtdetr-l-NAM summary: 684 layers, 32,810,179 parameters, 32,810,179 gradients, 108.0 GFLOPs

                  from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  1      2048  ultralytics.nn.AddModules.NAM.NAM            [1024, 1024]                  
 10                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 11                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 12                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 13                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 15                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 16            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 17                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 18                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 19                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 20                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 21            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 24            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 25                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 26                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 27            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 28                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 29        [22, 25, 28]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-NAM summary: 684 layers, 32,810,179 parameters, 32,810,179 gradients, 108.0 GFLOPs

rtdetr-l-HGBlock_NAM

rtdetr-l-HGBlock_NAM summary: 691 layers, 32,814,275 parameters, 32,814,275 gradients, 108.0 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   1697408  ultralytics.nn.AddModules.NAM.HGBlock_NAM    [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2057856  ultralytics.nn.AddModules.NAM.HGBlock_NAM    [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2057856  ultralytics.nn.AddModules.NAM.HGBlock_NAM    [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [1024, 1024, 3, 2, 1, False]  
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_NAM summary: 691 layers, 32,814,275 parameters, 32,814,275 gradients, 108.0 GFLOPs