RT-DETR改进策略【Conv和Transformer】| 2023 引入CloFormer中的Clo block 双分支结构,融合高频低频信息(二次创新AIFI)
一、本文介绍
本文记录的是
利用
CloFormer
中的
Clo block
优化
RT-DETR
的网络模型
。
Clo block
的作用在于采用
双分支结构
,同时包含了
局部
分支和
全局
分支,
克服了现有轻量级模型在处理高频局部信息时的不足
。相比一些只注重设计稀疏注意力来处理低频全局信息或仅使用单一类型权重处理局部信息的方法,能更好地表达网络特征。本文将其加入到
RT-DETR
中,并进行二次创新,来综合高低频信息,更好地突出重要特征,从而提升模型在各种视觉任务中的性能。
二、CloFormer模块介绍
Rethinking Local Perception in Lightweight Vision Transformer
2.1 设计出发点
现有轻量级模型在处理高频局部信息时存在不足。大多数方法只注重设计稀疏注意力来处理低频全局信息,处理高频局部信息的方法相对简单。例如,一些模型只用原始卷积提取局部表示,仅使用全局共享权重;另一些模型虽在窗口内使用注意力获取高频信息,但只使用特定于每个token的上下文感知权重。
CloFormer
旨在同时利用共享权重和上下文感知权重的优势,更好地处理高频局部信息,所以设计了
Clo block
。
2.2 原理
-
Clo block采用双分支结构,一个分支用于 捕捉高频信息 ,另一个分支用于 捕捉低频信息 ,然后将两个分支的输出融合,使模型能够 同时感知高频和低频信息。
2.3 结构
2.3.1 局部分支(Local Branch)
采用精心设计的
AttnConv算子
。
首先对输入进行线性变换得到
Q
、
K
、
V
,然后对
V
使用
深度可分离卷积(DWconv)
进行
局部特征聚合
,其权重是全局共享的。接着对
Q
和
K
分别使用
DWconv
聚合局部信息,计算
Q
和
K
的
哈达玛积
,并进行一系列线性或非线性变换生成在
[-1, 1]
范围内的上下文感知权重,最后用这些权重增
强局部特征
。
2.3.2 全局分支(Global Branch)
-
对
K和V进行下采样,然后执行标准的注意力过程( X g l o b a l = A t t n t i o n ( Q g , P o o l ( K g ) , P o o l ( V g ) ) X_{global }=Attntion\left(Q_{g}, Pool\left(K_{g}\right), Pool\left(V_{g}\right)\right) X g l o ba l = A tt n t i o n ( Q g , P oo l ( K g ) , P oo l ( V g ) ) )来提取 低频全局信息 。
2.4 优势
-
更好的局部感知能力
:与传统卷积相比,
AttnConv利用上下文感知权重, 能更好地适应输入内容进行局部感知 ;与局部自注意力相比,引入共享权重能更好地处理高频信息,且生成上下文感知权重的方法引入了更强的非线性,提高了性能。 - 同时捕捉高低频信息 : 双分支结构 使模型能够同时捕捉高频和低频信息,这是现有很多轻量级模型所不具备的优势。
论文: https://arxiv.org/pdf/2303.17803
源码: https://github.com/qhfan/CloFormer
三、CloFormer的实现代码
CloFormer
及其改进的实现代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from typing import List
from typing import List
from timm.models.layers import DropPath
from typing import List
from efficientnet_pytorch.model import MemoryEfficientSwish
from ultralytics.nn.modules.conv import LightConv
class AttnMap(nn.Module):
def __init__(self, dim):
super().__init__()
self.act_block = nn.Sequential(
nn.Conv2d(dim, dim, 1, 1, 0),
MemoryEfficientSwish(),
nn.Conv2d(dim, dim, 1, 1, 0)
#nn.Identity()
)
def forward(self, x):
return self.act_block(x)
class CloFormerAttnConv(nn.Module):
def __init__(self, dim, num_heads=4, group_split=[2,2], kernel_sizes=[5], window_size=7,
attn_drop=0., proj_drop=0., qkv_bias=True):
super().__init__()
assert sum(group_split) == num_heads
assert len(kernel_sizes) + 1 == len(group_split)
self.dim = dim
self.num_heads = num_heads
self.dim_head = dim // num_heads
self.scalor = self.dim_head ** -0.5
self.kernel_sizes = kernel_sizes
self.window_size = window_size
self.group_split = group_split
convs = []
act_blocks = []
qkvs = []
#projs = []
for i in range(len(kernel_sizes)):
kernel_size = kernel_sizes[i]
group_head = group_split[i]
if group_head == 0:
continue
convs.append(nn.Conv2d(3*self.dim_head*group_head, 3*self.dim_head*group_head, kernel_size,
1, kernel_size//2, groups=3*self.dim_head*group_head))
act_blocks.append(AttnMap(self.dim_head*group_head))
qkvs.append(nn.Conv2d(dim, 3*group_head*self.dim_head, 1, 1, 0, bias=qkv_bias))
#projs.append(nn.Linear(group_head*self.dim_head, group_head*self.dim_head, bias=qkv_bias))
if group_split[-1] != 0:
self.global_q = nn.Conv2d(dim, group_split[-1]*self.dim_head, 1, 1, 0, bias=qkv_bias)
self.global_kv = nn.Conv2d(dim, group_split[-1]*self.dim_head*2, 1, 1, 0, bias=qkv_bias)
#self.global_proj = nn.Linear(group_split[-1]*self.dim_head, group_split[-1]*self.dim_head, bias=qkv_bias)
self.avgpool = nn.AvgPool2d(window_size, window_size) if window_size!=1 else nn.Identity()
self.convs = nn.ModuleList(convs)
self.act_blocks = nn.ModuleList(act_blocks)
self.qkvs = nn.ModuleList(qkvs)
self.proj = nn.Conv2d(dim, dim, 1, 1, 0, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj_drop = nn.Dropout(proj_drop)
def high_fre_attntion(self, x: torch.Tensor, to_qkv: nn.Module, mixer: nn.Module, attn_block: nn.Module):
'''
x: (b c h w)
'''
b, c, h, w = x.size()
qkv = to_qkv(x) #(b (3 m d) h w)
qkv = mixer(qkv).reshape(b, 3, -1, h, w).transpose(0, 1).contiguous() #(3 b (m d) h w)
q, k, v = qkv #(b (m d) h w)
attn = attn_block(q.mul(k)).mul(self.scalor)
attn = self.attn_drop(torch.tanh(attn))
res = attn.mul(v) #(b (m d) h w)
return res
def low_fre_attention(self, x : torch.Tensor, to_q: nn.Module, to_kv: nn.Module, avgpool: nn.Module):
'''
x: (b c h w)
'''
b, c, h, w = x.size()
q = to_q(x).reshape(b, -1, self.dim_head, h*w).transpose(-1, -2).contiguous() #(b m (h w) d)
kv = avgpool(x) #(b c h w)
kv = to_kv(kv).view(b, 2, -1, self.dim_head, (h*w)//(self.window_size**2)).permute(1, 0, 2, 4, 3).contiguous() #(2 b m (H W) d)
k, v = kv #(b m (H W) d)
attn = self.scalor * q @ k.transpose(-1, -2) #(b m (h w) (H W))
attn = self.attn_drop(attn.softmax(dim=-1))
res = attn @ v #(b m (h w) d)
res = res.transpose(2, 3).reshape(b, -1, h, w).contiguous()
return res
def forward(self, x: torch.Tensor):
'''
x: (b c h w)
'''
res = []
for i in range(len(self.kernel_sizes)):
if self.group_split[i] == 0:
continue
res.append(self.high_fre_attntion(x, self.qkvs[i], self.convs[i], self.act_blocks[i]))
if self.group_split[-1] != 0:
res.append(self.low_fre_attention(x, self.global_q, self.global_kv, self.avgpool))
return self.proj_drop(self.proj(torch.cat(res, dim=1)))
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class LayerNorm(nn.Module):
""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
shape (batch_size, height, width, channels) while channels_first corresponds to inputs
with shape (batch_size, channels, height, width).
"""
def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first"):
super().__init__()
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.eps = eps
self.data_format = data_format
if self.data_format not in ["channels_last", "channels_first"]:
raise NotImplementedError
self.normalized_shape = (normalized_shape, )
def forward(self, x):
if self.data_format == "channels_last":
return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
elif self.data_format == "channels_first":
u = x.mean(1, keepdim=True)
s = (x - u).pow(2).mean(1, keepdim=True)
x = (x - u) / torch.sqrt(s + self.eps)
x = self.weight[:, None, None] * x + self.bias[:, None, None]
return x
class AIFI_CloFormer(nn.Module):
"""Defines a single layer of the transformer encoder."""
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
"""Initialize the TransformerEncoderLayer with specified parameters."""
super().__init__()
self.Attention = CloFormerAttnConv(c1)
self.fc1 = nn.Conv2d(c1, cm, 1)
self.fc2 = nn.Conv2d(cm, c1, 1)
self.norm1 = LayerNorm(c1)
self.norm2 = LayerNorm(c1)
self.dropout = nn.Dropout(dropout)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.act = act
self.normalize_before = normalize_before
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
"""Performs forward pass with post-normalization."""
src2 = self.Attention(src)
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
src = src + self.dropout2(src2)
return self.norm2(src)
def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
"""Forward propagates the input through the encoder module."""
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
四、创新模块
4.1 改进点⭐
模块改进方法
:基于
CloFormerAttnConv模块
的
AIFI
(
第五节讲解添加步骤
)。
第二种改进方法是对
RT-DETR
中的
AIFI模块
进行改进,并将
CloFormerAttnConv
在加入到
AIFI
模块中。
改进代码如下:
对
AIFI
模块进行改进,加入
CloFormerAttnConv模块
,并重命名为
AIFI_CloFormer
。
class AIFI_CloFormer(nn.Module):
"""Defines a single layer of the transformer encoder."""
def __init__(self, c1, cm=2048, num_heads=8, dropout=0.0, act=nn.GELU(), normalize_before=False):
"""Initialize the TransformerEncoderLayer with specified parameters."""
super().__init__()
self.Attention = CloFormerAttnConv(c1)
self.fc1 = nn.Conv2d(c1, cm, 1)
self.fc2 = nn.Conv2d(cm, c1, 1)
self.norm1 = LayerNorm(c1)
self.norm2 = LayerNorm(c1)
self.dropout = nn.Dropout(dropout)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.act = act
self.normalize_before = normalize_before
def forward_post(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
"""Performs forward pass with post-normalization."""
src2 = self.Attention(src)
src = src + self.dropout1(src2)
src = self.norm1(src)
src2 = self.fc2(self.dropout(self.act(self.fc1(src))))
src = src + self.dropout2(src2)
return self.norm2(src)
def forward(self, src, src_mask=None, src_key_padding_mask=None, pos=None):
"""Forward propagates the input through the encoder module."""
return self.forward_post(src, src_mask, src_key_padding_mask, pos)
注意❗:在
第五小节
中需要声明的模块名称为:
AIFI_CloFormer
。
五、添加步骤
5.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
CloFormerAttnConv.py
,将
第三节
中的代码粘贴到此处。并需要安装
efficientnet_pytorch
包
pip install efficientnet_pytorch
5.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .CloFormerAttnConv import *
5.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
AIFI_CloFormer
模块
六、yaml模型文件
6.1 模型改进版本⭐
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-AIFI_CloFormer.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-AIFI_CloFormer.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
颈部网络
中的
AIFI模块
替换成
AIFI_CloFormer模块
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI_CloFormer, [1024]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
七、成功运行结果
打印网络模型可以看到
AIFI_CloFormer
已经加入到模型中,并可以进行训练了。
rtdetr-AIFI_CloFormer :
rtdetr-AIFI_CloFormer summary: 696 layers, 32,851,139 parameters, 32,851,139 gradients, 108.2 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 1695360 ultralytics.nn.modules.block.HGBlock [512, 192, 1024, 5, 6, True, False]
6 -1 6 2055808 ultralytics.nn.modules.block.HGBlock [1024, 192, 1024, 5, 6, True, True]
7 -1 6 2055808 ultralytics.nn.modules.block.HGBlock [1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
10 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
11 -1 1 832768 ultralytics.nn.AddModules.CloFormerAttnConv.AIFI_CloFormer[256, 1024]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
22 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
23 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
25 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
26 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
28 [21, 24, 27] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-AIFI_CloFormer summary: 696 layers, 32,851,139 parameters, 32,851,139 gradients, 108.2 GFLOPs