学习资源站

RT-DETR改进策略【Conv和Transformer】CVPR-2021BottleneckTransformers简单且高效的自注意力模块-

RT-DETR改进策略【Conv和Transformer】| CVPR-2021 Bottleneck Transformers 简单且高效的自注意力模块

一、本文介绍

本文记录的是 利用 Bottleneck Transformers (BoT) 优化 RT-DETR 的目标检测网络模型 。标准的卷积操作虽然能有效捕获局部信息,但在处理需要全局信息整合的任务时存在局限性,而自注意力机制能够有效地建模长距离依赖,因此考虑将其引入到视觉架构中。 本文利用 BoT模块 将标准卷积和自注意力相结合,提高模型的全局感知能力。



二、Bottleneck Transformers介绍

Bottleneck Transformers for Visual Recognition

Bottleneck Transformers(BoTNet) 是一种将自注意力(Self-Attention)融入计算机视觉任务的骨干架构,其设计的原理和优势如下:

2.1 原理

2.1.1 架构组成

BoT block 是通过将 ResNet瓶颈块 中的空间3×3卷积替换为 Multi-Head Self-Attention(MHSA)层 来构建的(如图所示)。

在这里插入图片描述

2.2.2 MHSA层

MHSA层 在二维特征图上实现全局(all2all)自注意力(如图所示)。为了使注意力操作具有位置感知能力,使用了相对位置编码。注意力的计算逻辑为 q k T + q r T qk^{T} + qr^{T} q k T + q r T ,其中 q , k , r q, k, r q , k , r 分别代表查询、键和相对位置编码。此外,MHSA层还使用了多个头,并且相对位置编码和值投影是它与Non - Local Layer的主要区别。

在这里插入图片描述

2.1 优势

  • 性能提升
    • 在COCO实例分割基准测试中,使用 BoTNet 显著提高了性能,如在不同训练配置和数据增强情况下,性能均有提升。
    • 对小对象的检测性能有显著增强,在不同ResNet家族骨干网络上的实验也表明了其适用性。
    • 与Non - Local Neural Networks相比, BoTNet 中的BoT块设计更好,能够带来更高的性能提升。
  • 可扩展性 :通过调整和扩展 BoTNet 的模型结构,可以在ImageNet验证集上达到较高的准确率,同时在计算效率上具有优势。
  • 简单有效 BoT block 的设计简单,基于已有的ResNet架构进行改进,易于实现和应用。尽管在构建上相对简单,但性能出色,为未来视觉架构中自注意力的应用提供了一个强有力的基线。

论文: https://arxiv.org/pdf/2101.11605
源码: https://github.com/tensorflow/tpu/tree/master/models/official/detection

三、Bottleneck Transformers的实现代码

Bottleneck Transformers模块 的实现代码如下:

import torch
import torch.nn as nn

from ultralytics.nn.modules.conv import LightConv
from ultralytics.utils.torch_utils import fuse_conv_and_bn

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class MHSA(nn.Module):
    def __init__(self, n_dims, width=14, height=14, heads=4,pos_emb=False):
        super(MHSA, self).__init__()

        self.heads = heads
        self.query = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.key = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.value = nn.Conv2d(n_dims, n_dims, kernel_size=1)
        self.pos=pos_emb
        if self.pos :
            self.rel_h_weight = nn.Parameter(torch.randn([1, heads, (n_dims ) // heads, 1, int(height)]), requires_grad=True)
            self.rel_w_weight = nn.Parameter(torch.randn([1, heads, (n_dims )// heads, int(width), 1]), requires_grad=True)
        self.softmax = nn.Softmax(dim=-1)
     
    def forward(self, x):
        n_batch, C, width, height = x.size() 
        q = self.query(x).view(n_batch, self.heads, C // self.heads, -1)
        k = self.key(x).view(n_batch, self.heads, C // self.heads, -1)
        v = self.value(x).view(n_batch, self.heads, C // self.heads, -1)
        content_content = torch.matmul(q.permute(0,1,3,2), k) 
        c1,c2,c3,c4=content_content.size()
        if self.pos:
            content_position = (self.rel_h_weight + self.rel_w_weight).view(1, self.heads, C // self.heads, -1).permute(0,1,3,2)   #1,4,1024,64
           
            content_position = torch.matmul(content_position, q)# ([1, 4, 1024, 256])
            content_position=content_position if(content_content.shape==content_position.shape)else content_position[:,: , :c3,]
            assert(content_content.shape==content_position.shape)
            energy = content_content + content_position
        else:
            energy=content_content
        attention = self.softmax(energy)
        out = torch.matmul(v, attention.permute(0,1,3,2)) #1,4,256,64
        out = out.view(n_batch, C, width, height)
        return out
class BottleneckTransformer(nn.Module):

    def __init__(self, c1, c2, stride=1, heads=4, mhsa=True, resolution=(20, 20),expansion=1):
        super(BottleneckTransformer, self).__init__()
        c_=int(c2*expansion)
        self.cv1 = Conv(c1, c_, 1,1)
        if not mhsa:
            self.cv2 = Conv(c_,c2, 3, 1)
        else:
            self.cv2 = nn.ModuleList()
            self.cv2.append(MHSA(c2, width=int(resolution[0]), height=int(resolution[1]), heads=heads))
            if stride == 2:
                self.cv2.append(nn.AvgPool2d(2, 2))
            self.cv2 = nn.Sequential(*self.cv2)
        self.shortcut = c1==c2 
        if stride != 1 or c1 != expansion*c2:
            self.shortcut = nn.Sequential(
                nn.Conv2d(c1, expansion*c2, kernel_size=1, stride=stride),
                nn.BatchNorm2d(expansion*c2)
            )
        self.fc1 = nn.Linear(c2, c2)     

    def forward(self, x):
        out=x + self.cv2(self.cv1(x)) if self.shortcut else self.cv2(self.cv1(x))
        return out

class HGBlock_BoT(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = BottleneckTransformer(c1, c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y


四、创新模块

4.1 改进点⭐

模块改进方法
1️⃣ 加入 BottleneckTransformer模块 BottleneckTransformer模块 添加后如下:

在这里插入图片描述

2️⃣:加入基于 BottleneckTransformer模块 HGBlock 。利用 BottleneckTransformer 改进 HGBlock 模块, 改进后的模块形成了一种混合结构,既利用了卷积学习抽象和低分辨率特征图的高效性,又利用了全局自注意力来处理和聚合卷积捕获的特征图信息。

改进代码如下:

改进 HGBlock 模块,加入 BottleneckTransformer 模块,并重命名为 HGBlock_BoT

class HGBlock_BoT(nn.Module):
    """
    HG_Block of PPHGNetV2 with 2 convolutions and LightConv.

    https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
    """

    def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
        """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
        super().__init__()
        block = LightConv if lightconv else Conv
        self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
        self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act)  # squeeze conv
        self.ec = Conv(c2 // 2, c2, 1, 1, act=act)  # excitation conv
        self.add = shortcut and c1 == c2
        self.cv = BottleneckTransformer(c1, c2)
        
    def forward(self, x):
        """Forward pass of a PPHGNetV2 backbone layer."""
        y = [x]
        y.extend(m(y[-1]) for m in self.m)
        y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
        return y + x if self.add else y

在这里插入图片描述

注意❗:在 5.2和5.3小节 中需要声明的模块名称为: HGBlock_BoT


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 BoT.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .BoT import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 HGBlock_BoT

在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-HGBlock_BoT.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-HGBlock_BoT.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中添加 HGBlock_BoT模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, HGBlock_BoT, [192, 512, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock_BoT, [192, 512, 5, True, True]]
  - [-1, 6, HGBlock_BoT, [192, 512, 5, True, True]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 HGBlock_BoT 已经加入到模型中,并可以进行训练了。

rtdetr-l-HGBlock_BoT

rtdetr-l-HGBlock_BoT summary: 716 layers, 33,435,331 parameters, 33,435,331 gradients, 107.6 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6   2188416  ultralytics.nn.AddModules.BoT.HGBlock_BoT    [512, 192, 512, 5, 6, True, False]
  6                  -1  6   2188416  ultralytics.nn.AddModules.BoT.HGBlock_BoT    [512, 192, 512, 5, 6, True, True]
  7                  -1  6   2188416  ultralytics.nn.AddModules.BoT.HGBlock_BoT    [512, 192, 512, 5, 6, True, True]
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-HGBlock_BoT summary: 716 layers, 33,435,331 parameters, 33,435,331 gradients, 107.6 GFLOPs