学习资源站

RT-DETR改进策略【卷积层】CVPR-2021多样分支块DBB,替换下采样模块并二次创新ResNetLayer-

RT-DETR改进策略【卷积层】| CVPR-2021 多样分支块DBB,替换下采样模块 并二次创新ResNetLayer

一、本文介绍

本文记录的是 利用 多样分支块DBB 模块优化 RT-DETR 的目标检测网络模型 DBB 采用 多分支拓扑结构 ,包含多尺度卷积、顺序卷积、平均池化等操作。 这些不同的操作具有不同的感受野和复杂度,能够像Inception架构一样丰富特征空间。 。本文将深入分析 DBB模块 的特点,结合 RT-DETR 使模型能够学习到更全面、更具代表性的特征。



二、Diverse Branch Block介绍

Diverse Branch Block: Building a Convolution as an Inception-like Unit

以下是对 DBB模块 的详细介绍:

2.1 出发点

  • 提升性能同时控制推理成本 :卷积神经网络(ConvNet)的性能提升一直是研究热点,但传统方法如新颖的架构设计虽能提升性能却可能增加推理成本,而实际应用需平衡性能和推理成本(如延迟、内存占用和参数数量)。因此,寻求在不增加推理成本的前提下提升性能的方法是 DBB模块 设计的出发点之一。
  • 结合多分支结构优势 :Inception模型等多分支架构证明了多样连接、不同感受野和多分支组合可丰富特征空间并提升性能,但复杂结构可能不利于推理。 DBB模块 旨在借鉴多分支拓扑结构的优势,同时解决其推理慢的问题。

2.2 原理

  • 训练与推理结构分离 :通过在训练时复杂化模型结构(采用多分支等结构),训练后将其转换回原始推理结构,实现训练时提升性能,推理时保持成本不变。
  • 结构重参数化 DBB模块 基于结构重参数化的思想,即利用从一个结构转换而来的参数对另一个结构进行参数化。具体而言,在训练过程中使用复杂的多分支结构(包含不同尺度和复杂度的分支操作),训练完成后将其等价转换为单个卷积层进行部署。

在这里插入图片描述

2.3 结构

2.3.1多分支拓扑

采用包含多尺度卷积、顺序的 1 × 1 − K × K 1×1 - K×K 1 × 1 K × K 卷积、平均池化和分支相加的多分支拓扑结构。例如,一个具有代表性的DBB实例可能包含 1 × 1 1×1 1 × 1 1 × 1 − K × K 1×1 - K×K 1 × 1 K × K 1 × 1 − A V G 1×1 - AVG 1 × 1 A V G 等分支来增强原始的 K × K K×K K × K 卷积层。

2.3.2 六种转换方式

  • Transform I(conv - BN转换) :将卷积层和与之配套的批量归一化(BN)层融合为一个卷积层,通过对原始卷积 - BN序列的参数进行转换来构建新的卷积核和偏置。
  • Transform II(分支相加转换) :利用卷积的可加性,将具有相同配置的两个或多个卷积层输出相加的操作转换为一个卷积层。
  • Transform III(顺序卷积转换) :可以将一系列的 1 × 1 1×1 1 × 1 卷积 - BN - K × K K×K K × K 卷积 - BN操作合并为一个单一的 K × K K×K K × K 卷积。
  • Transform IV(深度拼接转换) :用于处理深度拼接的分支情况,将具有相同配置的分支通过拼接操作转换为一个卷积层。
  • Transform V(平均池化转换) :将平均池化操作转换为一个具有特定卷积核的卷积层。
  • Transform VI(多尺度卷积转换) :考虑到不同尺度的卷积核之间的等价关系,通过零填充等方式将如 1 × 1 1×1 1 × 1 1 × K 1×K 1 × K K × 1 K×1 K × 1 等卷积转换为 K × K K×K K × K 卷积。

在这里插入图片描述

2.4 优势

  • 性能提升
    • 丰富特征空间 :多样的分支结构(不同尺度和复杂度的路径)能够丰富特征空间,类似于Inception架构,从而提升模型性能。例如在ImageNet数据集上,使用 DBB模块 可使模型的top - 1准确率提升高达1.9%。
    • 更好的连接组合 :实验表明,结合不同表示能力的分支(如 1 × 1 1×1 1 × 1 卷积和 3 × 3 3×3 3 × 3 卷积)比使用相同能力的分支(如两个 3 × 3 3×3 3 × 3 卷积)效果更好。
  • 通用性和易用性
    • 作为通用构建块 DBB 是一个通用的构建块,可以应用于各种ConvNet架构,作为常规卷积层的替代品插入到现有架构中,无需对整体架构进行大幅修改。
    • 转换为单卷积无成本 :用户可以使用六种转换方式将 DBB模块 在训练后等价转换为单个卷积层进行部署,不会产生额外的推理时间成本。
  • 训练效率 :实验结果显示,增加训练时的参数数量(通过DBB的复杂结构)并不会显著降低训练速度,这使得在有充足训练资源的情况下,可以通过使用 DBB 来训练更强大的ConvNets,以获取更好的性能。

论文: https://arxiv.org/pdf/2103.13425
源码: https://github.com/DingXiaoH/DiverseBranchBlock

三、DBB的实现代码

DBB模块 的实现代码如下:

import torch
import torch.nn as nn
import math
from ultralytics.nn.modules.conv import LightConv
from ultralytics.utils.checks import check_version
import torch.nn.functional as F
import numpy as np
 
TORCH_1_10 = check_version(torch.__version__, '1.10.0')
 
def make_anchors(feats, strides, grid_cell_offset=0.5):
    """Generate anchors from features."""
    anchor_points, stride_tensor = [], []
    assert feats is not None
    dtype, device = feats[0].dtype, feats[0].device
    for i, stride in enumerate(strides):
        _, _, h, w = feats[i].shape
        sx = torch.arange(end=w, device=device, dtype=dtype) + grid_cell_offset  # shift x
        sy = torch.arange(end=h, device=device, dtype=dtype) + grid_cell_offset  # shift y
        sy, sx = torch.meshgrid(sy, sx, indexing='ij') if TORCH_1_10 else torch.meshgrid(sy, sx)
        anchor_points.append(torch.stack((sx, sy), -1).view(-1, 2))
        stride_tensor.append(torch.full((h * w, 1), stride, dtype=dtype, device=device))
    return torch.cat(anchor_points), torch.cat(stride_tensor)

def dist2bbox(distance, anchor_points, xywh=True, dim=-1):
    """Transform distance(ltrb) to box(xywh or xyxy)."""
    lt, rb = distance.chunk(2, dim)
    x1y1 = anchor_points - lt
    x2y2 = anchor_points + rb
    if xywh:
        c_xy = (x1y1 + x2y2) / 2
        wh = x2y2 - x1y1
        return torch.cat((c_xy, wh), dim)  # xywh bbox
    return torch.cat((x1y1, x2y2), dim)  # xyxy bbox

class DFL(nn.Module):
    """
    Integral module of Distribution Focal Loss (DFL).
    Proposed in Generalized Focal Loss https://ieeexplore.ieee.org/document/9792391
    """
 
    def __init__(self, c1=16):
        """Initialize a convolutional layer with a given number of input channels."""
        super().__init__()
        self.conv = nn.Conv2d(c1, 1, 1, bias=False).requires_grad_(False)
        x = torch.arange(c1, dtype=torch.float)
        self.conv.weight.data[:] = nn.Parameter(x.view(1, c1, 1, 1))
        self.c1 = c1
 
    def forward(self, x):
        """Applies a transformer layer on input tensor 'x' and returns a tensor."""
        b, c, a = x.shape  # batch, channels, anchors
        return self.conv(x.view(b, 4, self.c1, a).transpose(2, 1).softmax(1)).view(b, 4, a)
        # return self.conv(x.view(b, self.c1, 4, a).softmax(1)).view(b, 4, a)

class Proto(nn.Module):
    """YOLOv8 mask Proto module for segmentation models."""
 
    def __init__(self, c1, c_=256, c2=32):
        """
        Initializes the YOLOv8 mask Proto module with specified number of protos and masks.
        Input arguments are ch_in, number of protos, number of masks.
        """
        super().__init__()
        self.cv1 = Conv(c1, c_, k=3)
        self.upsample = nn.ConvTranspose2d(c_, c_, 2, 2, 0, bias=True)  # nn.Upsample(scale_factor=2, mode='nearest')
        self.cv2 = Conv(c_, c_, k=3)
        self.cv3 = Conv(c_, c2)
 
    def forward(self, x):
        """Performs a forward pass through layers using an upsampled input image."""
        return self.cv3(self.cv2(self.upsample(self.cv1(x))))

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))
 
def transI_fusebn(kernel, bn):
    gamma = bn.weight
    std = (bn.running_var + bn.eps).sqrt()
    return kernel * ((gamma / std).reshape(-1, 1, 1, 1)), bn.bias - bn.running_mean * gamma / std

def transII_addbranch(kernels, biases):
    return sum(kernels), sum(biases)

def transIII_1x1_kxk(k1, b1, k2, b2, groups):
    if groups == 1:
        k = F.conv2d(k2, k1.permute(1, 0, 2, 3))  #
        b_hat = (k2 * b1.reshape(1, -1, 1, 1)).sum((1, 2, 3))
    else:
        k_slices = []
        b_slices = []
        k1_T = k1.permute(1, 0, 2, 3)
        k1_group_width = k1.size(0) // groups
        k2_group_width = k2.size(0) // groups
        for g in range(groups):
            k1_T_slice = k1_T[:, g * k1_group_width:(g + 1) * k1_group_width, :, :]
            k2_slice = k2[g * k2_group_width:(g + 1) * k2_group_width, :, :, :]
            k_slices.append(F.conv2d(k2_slice, k1_T_slice))
            b_slices.append(
                (k2_slice * b1[g * k1_group_width:(g + 1) * k1_group_width].reshape(1, -1, 1, 1)).sum((1, 2, 3)))
        k, b_hat = transIV_depthconcat(k_slices, b_slices)
    return k, b_hat + b2

def transIV_depthconcat(kernels, biases):
    return torch.cat(kernels, dim=0), torch.cat(biases)

def transV_avg(channels, kernel_size, groups):
    input_dim = channels // groups
    k = torch.zeros((channels, input_dim, kernel_size, kernel_size))
    k[np.arange(channels), np.tile(np.arange(input_dim), groups), :, :] = 1.0 / kernel_size ** 2
    return k

#   This has not been tested with non-square kernels (kernel.size(2) != kernel.size(3)) nor even-size kernels
def transVI_multiscale(kernel, target_kernel_size):
    H_pixels_to_pad = (target_kernel_size - kernel.size(2)) // 2
    W_pixels_to_pad = (target_kernel_size - kernel.size(3)) // 2
    return F.pad(kernel, [H_pixels_to_pad, H_pixels_to_pad, W_pixels_to_pad, W_pixels_to_pad])

def conv_bn(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1,
            padding_mode='zeros'):
    conv_layer = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                           stride=stride, padding=padding, dilation=dilation, groups=groups,
                           bias=False, padding_mode=padding_mode)
    bn_layer = nn.BatchNorm2d(num_features=out_channels, affine=True)
    se = nn.Sequential()
    se.add_module('conv', conv_layer)
    se.add_module('bn', bn_layer)
    return se

class IdentityBasedConv1x1(nn.Conv2d):
    def __init__(self, channels, groups=1):
        super(IdentityBasedConv1x1, self).__init__(in_channels=channels, out_channels=channels, kernel_size=1, stride=1,
                                                   padding=0, groups=groups, bias=False)
 
        assert channels % groups == 0
        input_dim = channels // groups
        id_value = np.zeros((channels, input_dim, 1, 1))
        for i in range(channels):
            id_value[i, i % input_dim, 0, 0] = 1
        self.id_tensor = torch.from_numpy(id_value).type_as(self.weight)
        nn.init.zeros_(self.weight)
 
    def forward(self, input):
        kernel = self.weight + self.id_tensor.to(self.weight.device).type_as(self.weight)
        result = F.conv2d(input, kernel, None, stride=1, padding=0, dilation=self.dilation, groups=self.groups)
        return result
 
    def get_actual_kernel(self):
        return self.weight + self.id_tensor.to(self.weight.device)

class BNAndPadLayer(nn.Module):
    def __init__(self,
                 pad_pixels,
                 num_features,
                 eps=1e-5,
                 momentum=0.1,
                 affine=True,
                 track_running_stats=True):
        super(BNAndPadLayer, self).__init__()
        self.bn = nn.BatchNorm2d(num_features, eps, momentum, affine, track_running_stats)
        self.pad_pixels = pad_pixels
 
    def forward(self, input):
        output = self.bn(input)
        if self.pad_pixels > 0:
            if self.bn.affine:
                pad_values = self.bn.bias.detach() - self.bn.running_mean * self.bn.weight.detach() / torch.sqrt(
                    self.bn.running_var + self.bn.eps)
            else:
                pad_values = - self.bn.running_mean / torch.sqrt(self.bn.running_var + self.bn.eps)
            output = F.pad(output, [self.pad_pixels] * 4)
            pad_values = pad_values.view(1, -1, 1, 1)
            output[:, :, 0:self.pad_pixels, :] = pad_values
            output[:, :, -self.pad_pixels:, :] = pad_values
            output[:, :, :, 0:self.pad_pixels] = pad_values
            output[:, :, :, -self.pad_pixels:] = pad_values
        return output
 
    @property
    def weight(self):
        return self.bn.weight
 
    @property
    def bias(self):
        return self.bn.bias
 
    @property
    def running_mean(self):
        return self.bn.running_mean
 
    @property
    def running_var(self):
        return self.bn.running_var
 
    @property
    def eps(self):
        return self.bn.eps

class DiverseBranchBlock(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3,
                 stride=1, padding=None, dilation=1, groups=1,
                 internal_channels_1x1_3x3=None,
                 deploy=False, single_init=False):
        super(DiverseBranchBlock, self).__init__()
        self.deploy = deploy
 
        self.nonlinear = Conv.default_act
 
        self.kernel_size = kernel_size
        self.out_channels = out_channels
        self.groups = groups
 
        if padding is None:
            padding = autopad(kernel_size, padding, dilation)
        assert padding == kernel_size // 2
 
        if deploy:
            self.dbb_reparam = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                         stride=stride,
                                         padding=padding, dilation=dilation, groups=groups, bias=True)
 
        else:
 
            self.dbb_origin = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,
                                      stride=stride, padding=padding, dilation=dilation, groups=groups)
 
            self.dbb_avg = nn.Sequential()
            if groups < out_channels:
                self.dbb_avg.add_module('conv',
                                        nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=1,
                                                  stride=1, padding=0, groups=groups, bias=False))
                self.dbb_avg.add_module('bn', BNAndPadLayer(pad_pixels=padding, num_features=out_channels))
                self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=0))
                self.dbb_1x1 = conv_bn(in_channels=in_channels, out_channels=out_channels, kernel_size=1, stride=stride,
                                       padding=0, groups=groups)
            else:
                self.dbb_avg.add_module('avg', nn.AvgPool2d(kernel_size=kernel_size, stride=stride, padding=padding))
 
            self.dbb_avg.add_module('avgbn', nn.BatchNorm2d(out_channels))
 
            if internal_channels_1x1_3x3 is None:
                internal_channels_1x1_3x3 = in_channels if groups < out_channels else 2 * in_channels  # For mobilenet, it is better to have 2X internal channels
 
            self.dbb_1x1_kxk = nn.Sequential()
            if internal_channels_1x1_3x3 == in_channels:
                self.dbb_1x1_kxk.add_module('idconv1', IdentityBasedConv1x1(channels=in_channels, groups=groups))
            else:
                self.dbb_1x1_kxk.add_module('conv1',
                                            nn.Conv2d(in_channels=in_channels, out_channels=internal_channels_1x1_3x3,
                                                      kernel_size=1, stride=1, padding=0, groups=groups, bias=False))
            self.dbb_1x1_kxk.add_module('bn1', BNAndPadLayer(pad_pixels=padding, num_features=internal_channels_1x1_3x3,
                                                             affine=True))
            self.dbb_1x1_kxk.add_module('conv2',
                                        nn.Conv2d(in_channels=internal_channels_1x1_3x3, out_channels=out_channels,
                                                  kernel_size=kernel_size, stride=stride, padding=0, groups=groups,
                                                  bias=False))
            self.dbb_1x1_kxk.add_module('bn2', nn.BatchNorm2d(out_channels))
 
        #   The experiments reported in the paper used the default initialization of bn.weight (all as 1). But changing the initialization may be useful in some cases.
        if single_init:
            #   Initialize the bn.weight of dbb_origin as 1 and others as 0. This is not the default setting.
            self.single_init()
 
    def get_equivalent_kernel_bias(self):
        k_origin, b_origin = transI_fusebn(self.dbb_origin.conv.weight, self.dbb_origin.bn)
 
        if hasattr(self, 'dbb_1x1'):
            k_1x1, b_1x1 = transI_fusebn(self.dbb_1x1.conv.weight, self.dbb_1x1.bn)
            k_1x1 = transVI_multiscale(k_1x1, self.kernel_size)
        else:
            k_1x1, b_1x1 = 0, 0
 
        if hasattr(self.dbb_1x1_kxk, 'idconv1'):
            k_1x1_kxk_first = self.dbb_1x1_kxk.idconv1.get_actual_kernel()
        else:
            k_1x1_kxk_first = self.dbb_1x1_kxk.conv1.weight
        k_1x1_kxk_first, b_1x1_kxk_first = transI_fusebn(k_1x1_kxk_first, self.dbb_1x1_kxk.bn1)
        k_1x1_kxk_second, b_1x1_kxk_second = transI_fusebn(self.dbb_1x1_kxk.conv2.weight, self.dbb_1x1_kxk.bn2)
        k_1x1_kxk_merged, b_1x1_kxk_merged = transIII_1x1_kxk(k_1x1_kxk_first, b_1x1_kxk_first, k_1x1_kxk_second,
                                                              b_1x1_kxk_second, groups=self.groups)
 
        k_avg = transV_avg(self.out_channels, self.kernel_size, self.groups)
        k_1x1_avg_second, b_1x1_avg_second = transI_fusebn(k_avg.to(self.dbb_avg.avgbn.weight.device),
                                                           self.dbb_avg.avgbn)
        if hasattr(self.dbb_avg, 'conv'):
            k_1x1_avg_first, b_1x1_avg_first = transI_fusebn(self.dbb_avg.conv.weight, self.dbb_avg.bn)
            k_1x1_avg_merged, b_1x1_avg_merged = transIII_1x1_kxk(k_1x1_avg_first, b_1x1_avg_first, k_1x1_avg_second,
                                                                  b_1x1_avg_second, groups=self.groups)
        else:
            k_1x1_avg_merged, b_1x1_avg_merged = k_1x1_avg_second, b_1x1_avg_second
 
        return transII_addbranch((k_origin, k_1x1, k_1x1_kxk_merged, k_1x1_avg_merged),
                                 (b_origin, b_1x1, b_1x1_kxk_merged, b_1x1_avg_merged))
 
    def switch_to_deploy(self):
        if hasattr(self, 'dbb_reparam'):
            return
        kernel, bias = self.get_equivalent_kernel_bias()
        self.dbb_reparam = nn.Conv2d(in_channels=self.dbb_origin.conv.in_channels,
                                     out_channels=self.dbb_origin.conv.out_channels,
                                     kernel_size=self.dbb_origin.conv.kernel_size, stride=self.dbb_origin.conv.stride,
                                     padding=self.dbb_origin.conv.padding, dilation=self.dbb_origin.conv.dilation,
                                     groups=self.dbb_origin.conv.groups, bias=True)
        self.dbb_reparam.weight.data = kernel
        self.dbb_reparam.bias.data = bias
        for para in self.parameters():
            para.detach_()
        self.__delattr__('dbb_origin')
        self.__delattr__('dbb_avg')
        if hasattr(self, 'dbb_1x1'):
            self.__delattr__('dbb_1x1')
        self.__delattr__('dbb_1x1_kxk')
 
    def forward(self, inputs):
        if hasattr(self, 'dbb_reparam'):
            return self.nonlinear(self.dbb_reparam(inputs))
 
        out = self.dbb_origin(inputs)
        if hasattr(self, 'dbb_1x1'):
            out += self.dbb_1x1(inputs)
        out += self.dbb_avg(inputs)
        out += self.dbb_1x1_kxk(inputs)
        return self.nonlinear(out)
 
    def init_gamma(self, gamma_value):
        if hasattr(self, "dbb_origin"):
            torch.nn.init.constant_(self.dbb_origin.bn.weight, gamma_value)
        if hasattr(self, "dbb_1x1"):
            torch.nn.init.constant_(self.dbb_1x1.bn.weight, gamma_value)
        if hasattr(self, "dbb_avg"):
            torch.nn.init.constant_(self.dbb_avg.avgbn.weight, gamma_value)
        if hasattr(self, "dbb_1x1_kxk"):
            torch.nn.init.constant_(self.dbb_1x1_kxk.bn2.weight, gamma_value)
 
    def single_init(self):
        self.init_gamma(0.0)
        if hasattr(self, "dbb_origin"):
            torch.nn.init.constant_(self.dbb_origin.bn.weight, 1.0)

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = DiverseBranchBlock(c2, c3, 1)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_DBB(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)


四、创新模块

4.1 改进点1⭐

模块改进方法 :直接加入 DiverseBranchBlock模块 第五节讲解添加步骤 )。

DiverseBranchBlock模块 添加后如下:

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 DBB模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进,并将 DBB 在加入到 ResNetLayer 模块中。

改进代码如下:

首先加入 DiverseBranchBlock 改进 ResNetBlock 模块 ,并将 ResNetLayer 重命名为 ResNetLayer_DBB

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = DiverseBranchBlock(c2, c3, 1)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_DBB(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)
 

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: DiverseBranchBlock ResNetLayer_DBB


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 DBB.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .DBB import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 DiverseBranchBlock ResNetLayer_DBB 模块

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本1

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-DBB.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-DBB.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 DWConv模块 替换成 DBB模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DiverseBranchBlock, [128, 3, 2]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DiverseBranchBlock, [512, 3, 2]] # 4-P4/16
  - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
  - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3

  - [-1, 1, DiverseBranchBlock, [1024, 3, 2]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_DBB.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_DBB.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的所有 ResNetLayer模块 替换成 ResNetLayer_DBB模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_DBB, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_DBB, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_DBB, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_DBB, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_DBB, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 DiverseBranchBlock ResNetLayer_DBB 已经加入到模型中,并可以进行训练了。

rtdetr-l-DBB

rtdetr-l-DBB summary: 727 layers, 60,678,979 parameters, 60,678,979 gradients, 151.6 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1    345600  ultralytics.nn.AddModules.DBB.DiverseBranchBlock[128, 128, 3, 2]              
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1   5511168  ultralytics.nn.AddModules.DBB.DiverseBranchBlock[512, 512, 3, 2]              
  5                  -1  6   1695360  ultralytics.nn.modules.block.HGBlock         [512, 192, 1024, 5, 6, True, False]
  6                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  7                  -1  6   2055808  ultralytics.nn.modules.block.HGBlock         [1024, 192, 1024, 5, 6, True, True]
  8                  -1  1  22032384  ultralytics.nn.AddModules.DBB.DiverseBranchBlock[1024, 1024, 3, 2]            
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-DBB summary: 727 layers, 60,678,979 parameters, 60,678,979 gradients, 151.6 GFLOPs

rtdetr-ResNetLayer_DBB

rtdetr-ResNetLayer_DBB summary: 833 layers, 59,238,307 parameters, 59,238,307 gradients, 172.4 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.DBB.ResNetLayer_DBB[3, 64, 1, True, 1]           
  1                  -1  1    382080  ultralytics.nn.AddModules.DBB.ResNetLayer_DBB[64, 64, 1, False, 3]         
  2                  -1  1   2088960  ultralytics.nn.AddModules.DBB.ResNetLayer_DBB[256, 128, 2, False, 4]       
  3                  -1  1  12262400  ultralytics.nn.AddModules.DBB.ResNetLayer_DBB[512, 256, 2, False, 6]       
  4                  -1  1  25240576  ultralytics.nn.AddModules.DBB.ResNetLayer_DBB[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_DBB summary: 833 layers, 59,238,307 parameters, 59,238,307 gradients, 172.4 GFLOPs