学习资源站

RT-DETR改进策略【卷积层】SAConv可切换的空洞卷积二次创新ResNetLayer-

RT-DETR改进策略【卷积层】| SAConv 可切换的空洞卷积 二次创新ResNetLayer

一、本文介绍

本文记录的是 利用 SAConv 优化 RT-DETR 的目标检测网络模型 空洞卷积 是一种在不增加参数量和计算量的情况下,通过在卷积核元素之间插入空洞来扩大滤波器视野的技术。并且为了使模型能够 适应不同尺度 的目标,本文利用 SAConv 将不同空洞率卷积结果进行结合,来获取更全面的特征表示,实现涨点。



二、SAConv介绍

DetectoRS: Detecting Objects with Recursive Feature Pyramid and Switchable Atrous Convolution

DetectoRS:用递归特征金字塔和可切换的空洞卷积检测物体

Switchable Atrous Convolution(SAC) 模块的设计出发点、原理、结构和优势如下:

2.1 设计出发点

  • 提升检测性能 :受到计算机视觉中“看两次思考两次”机制的启发,在微观层面上通过对特征进行不同空洞率的卷积操作来更好地捕捉图像中的目标信息,以提高目标检测性能。
  • 适应不同尺度目标 :为了使模型能够适应不同尺度的目标,通过不同空洞率卷积结果的结合来获取更全面的特征表示。
  • 便于利用预训练模型 :提供一种机制,能够轻松地将预训练的标准卷积网络进行转换,而无需从头开始训练整个模型。

在这里插入图片描述

2.2 原理

  • 空洞卷积原理 :空洞卷积(Atrous Convolution)是一种在不增加参数量和计算量的情况下,通过在卷积核元素之间插入空洞来扩大滤波器视野的技术。对于空洞率为 r r r 的空洞卷积,在连续的滤波器值之间引入 r − 1 r - 1 r 1 个零,相当于将(k×k)的滤波器内核大小扩大到 k e = k + ( k − 1 ) ( r − 1 ) k_{e}=k+(k - 1)(r - 1) k e = k + ( k 1 ) ( r 1 )
  • SAC原理 SAConv 模块将相同的输入特征用不同的空洞率进行卷积,并使用开关函数(switch functions)来收集结果。开关函数是空间相关的,即特征图的每个位置可能有不同的开关来控制 SAConv 的输出。通过这种方式,模型可以根据图像中不同位置的目标尺度自适应地选择合适的空洞率卷积结果。

2.3 结构

  • 主要组件 SAConv模块 主要由三个部分组成。
    • 中间的SAC组件 :这是核心部分,用于将卷积层转换为SAC。对于一个卷积层,其转换公式为 C o n v ( x , w , 1 ) → C o n v e r t t o S A C S ( x ) ⋅ C o n v ( x , w , 1 ) + ( 1 − S ( x ) ) ⋅ C o n v ( x , w + Δ w , r ) Conv(x, w, 1) \underset{ to SAC }{\stackrel{ Convert }{\to}} S(x) \cdot Conv(x, w, 1)+(1 - S(x)) \cdot Conv(x, w+\Delta w, r) C o n v ( x , w , 1 ) t o S A C C o n v er t S ( x ) C o n v ( x , w , 1 ) + ( 1 S ( x )) C o n v ( x , w + Δ w , r ) ,其中 r r r 是SAC的一个超参数, Δ w \Delta w Δ w 是一个可训练的权重,开关函数 S ( ⋅ ) S(\cdot) S ( ) 通过一个 5 × 5 5×5 5 × 5 内核的平均池化层后接一个 1 × 1 1×1 1 × 1 卷积层来实现。
    • 前后的全局上下文模块 :在 SAConv 组件前后分别插入两个全局上下文模块。这两个模块首先通过全局平均池化层压缩输入特征,然后经过一个 1 × 1 1×1 1 × 1 卷积层(无非线性层),将输出直接加回到主流中。这两个模块类似于SENet,但有一些区别,例如这里只有一个卷积层且输出处理方式不同。
  • 应用于骨干网络 :在实现中,将骨干网络(如ResNet及其变体)中的所有 3 × 3 3×3 3 × 3 卷积层替换为 SAConv ,并且使用可变形卷积(deformable convolution)来替换公式中的卷积操作,其偏移函数在从预训练骨干网络加载时初始化为预测 0 0 0

在这里插入图片描述

2.3 优势

  • 性能提升 :通过结合不同空洞率的卷积结果,能够更好地捕捉目标的多尺度信息,从而显著提高目标检测性能。在COCO数据集上的实验表明,SAC模块能够提高检测的准确率,例如在不同的骨干网络设置下都能使AP值有较大提升。
  • 灵活适应尺度 :由于开关函数的空间相关性,模型能够根据目标在图像中的位置和尺度自适应地调整卷积操作,更好地适应不同大小的目标检测,对大目标的检测效果尤为明显,体现在较高的 A P L AP_{L} A P L 值上。
  • 有效利用预训练模型 :提供了一种从标准卷积到条件卷积的有效转换机制,无需改变任何预训练模型,只需将骨干网络中的卷积层进行替换即可。这使得 SAConv模块 可以作为一个即插即用的模块应用于许多预训练的骨干网络,大大节省了训练成本和时间。
  • 新颖的权重锁定机制 :采用了一种权重锁定机制,即不同空洞卷积的权重除了一个可训练的差异外是相同的。这种机制在实验中证明了其有效性,有助于稳定模型训练和提高性能,当打破这种锁定机制时,AP值会明显下降。

论文: https://arxiv.org/pdf/2006.02334
源码: https://github.com/joe-siyuan-qiao/DetectoRS

三、SAConv的实现代码

SAConv模块 的实现代码如下:

import torch
import torch.nn as nn
import torch.nn.functional as F
 
class ConvAWS2d(nn.Conv2d):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 groups=1,
                 bias=True):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=stride,
            padding=padding,
            dilation=dilation,
            groups=groups,
            bias=bias)
        self.register_buffer('weight_gamma', torch.ones(self.out_channels, 1, 1, 1))
        self.register_buffer('weight_beta', torch.zeros(self.out_channels, 1, 1, 1))
 
    def _get_weight(self, weight):
        weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2,
                                                            keepdim=True).mean(dim=3, keepdim=True)
        weight = weight - weight_mean
        std = torch.sqrt(weight.view(weight.size(0), -1).var(dim=1) + 1e-5).view(-1, 1, 1, 1)
        weight = weight / std
        weight = self.weight_gamma * weight + self.weight_beta
        return weight
 
    def forward(self, x):
        weight = self._get_weight(self.weight)
        return super()._conv_forward(x, weight, None)
 
    def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
                              missing_keys, unexpected_keys, error_msgs):
        self.weight_gamma.data.fill_(-1)
        super()._load_from_state_dict(state_dict, prefix, local_metadata, strict,
                                      missing_keys, unexpected_keys, error_msgs)
        if self.weight_gamma.data.mean() > 0:
            return
        weight = self.weight.data
        weight_mean = weight.data.mean(dim=1, keepdim=True).mean(dim=2,
                                                                 keepdim=True).mean(dim=3, keepdim=True)
        self.weight_beta.data.copy_(weight_mean)
        std = torch.sqrt(weight.view(weight.size(0), -1).var(dim=1) + 1e-5).view(-1, 1, 1, 1)
        self.weight_gamma.data.copy_(std)

class SAConv2d(ConvAWS2d):
    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size=3,
                 s=1,
                 p=None,
                 g=1,
                 d=1,
                 act=True,
                 bias=True):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride=s,
            padding=autopad(kernel_size, p, d),
            dilation=d,
            groups=g,
            bias=bias)
        self.switch = torch.nn.Conv2d(
            self.in_channels,
            1,
            kernel_size=1,
            stride=s,
            bias=True)
        self.switch.weight.data.fill_(0)
        self.switch.bias.data.fill_(1)
        self.weight_diff = torch.nn.Parameter(torch.Tensor(self.weight.size()))
        self.weight_diff.data.zero_()
        self.pre_context = torch.nn.Conv2d(
            self.in_channels,
            self.in_channels,
            kernel_size=1,
            bias=True)
        self.pre_context.weight.data.fill_(0)
        self.pre_context.bias.data.fill_(0)
        self.post_context = torch.nn.Conv2d(
            self.out_channels,
            self.out_channels,
            kernel_size=1,
            bias=True)
        self.post_context.weight.data.fill_(0)
        self.post_context.bias.data.fill_(0)
 
        self.bn = nn.BatchNorm2d(out_channels)
        self.act = Conv.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        # pre-context
        avg_x = torch.nn.functional.adaptive_avg_pool2d(x, output_size=1)
        avg_x = self.pre_context(avg_x)
        avg_x = avg_x.expand_as(x)
        x = x + avg_x
        # switch
        avg_x = torch.nn.functional.pad(x, pad=(2, 2, 2, 2), mode="reflect")
        avg_x = torch.nn.functional.avg_pool2d(avg_x, kernel_size=5, stride=1, padding=0)
        switch = self.switch(avg_x)
        # sac
        weight = self._get_weight(self.weight)
        out_s = super()._conv_forward(x, weight, None)
        ori_p = self.padding
        ori_d = self.dilation
        self.padding = tuple(3 * p for p in self.padding)
        self.dilation = tuple(3 * d for d in self.dilation)
        weight = weight + self.weight_diff
        out_l = super()._conv_forward(x, weight, None)
        out = switch * out_s + (1 - switch) * out_l
        self.padding = ori_p
        self.dilation = ori_d
        # post-context
        avg_x = torch.nn.functional.adaptive_avg_pool2d(out, output_size=1)
        avg_x = self.post_context(avg_x)
        avg_x = avg_x.expand_as(out)
        out = out + avg_x
        return self.act(self.bn(out))

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = SAConv2d(c2, c3, kernel_size=1, act=False)
        # self.cv4 = SAConv2d(c2, c3, kernel_size=1, act=False)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_SAConv(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)


四、创新模块

4.1 改进点1

模块改进方法 1️⃣:直接使用 SAConv模块 ,源代码已在第三节中列出。
SAConv模块 添加后如下( 第五节讲解添加步骤 ):

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: SAConv2d

4.2 改进点2⭐

模块改进方法 2️⃣:基于 SAConv模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进。 SAConv 在加入到 ResNetLayer 模块中后, 通过结合不同空洞率的卷积结果,能够更好地捕捉目标的多尺度信息,从而显著提高目标检测性能。

改进代码如下:

首先添加如下代码改进 ResNetBlock 模块,并将 ResNetLayer 重命名为 ResNetLayer_SAConv

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = SAConv2d(c2, c3, kernel_size=1, act=False)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_SAConv(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: ResNetLayer_SAConv


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 SAConv.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .SAConv import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 SAConv2d ResNetLayer_SAConv 模块

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本一

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-SAConv.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-SAConv.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 网络 中的部分 HGBlock模块 替换成 SAConv模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, SAConv2d, [512]] # cm, c2, k, light, shortcut
  - [-1, 6, SAConv2d, [512]]
  - [-1, 6, SAConv2d, [512]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本二⭐

此处同样以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_SAConv.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_SAConv.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 网络 中的部分 ResNetLayer模块 替换成 ResNetLayer_SAConv模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_SAConv, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_SAConv, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_SAConv, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_SAConv, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_SAConv, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

分别打印网络模型可以看到 SAConv2d C3k2_SAConv 已经加入到模型中,并可以进行训练了。

rtdetr-l-SAConv

rtdetr-l-SAConv summary: 607 layers, 121,297,237 parameters, 121,297,237 gradients, 89.1 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6  31475718  ultralytics.nn.AddModules.SAConv.SAConv2d    [512, 512]                    
  6                  -1  6  31475718  ultralytics.nn.AddModules.SAConv.SAConv2d    [512, 512]                    
  7                  -1  6  31475718  ultralytics.nn.AddModules.SAConv.SAConv2d    [512, 512]                    
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-SAConv summary: 607 layers, 121,297,237 parameters, 121,297,237 gradients, 89.1 GFLOPs

rtdetr-ResNetLayer_SAConv

rtdetr-ResNetLayer_SAConv summary: 625 layers, 69,207,475 parameters, 69,207,475 gradients, 117.1 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.SAConv.ResNetLayer_SAConv[3, 64, 1, True, 1]           
  1                  -1  1    475779  ultralytics.nn.AddModules.SAConv.ResNetLayer_SAConv[64, 64, 1, False, 3]         
  2                  -1  1   2600964  ultralytics.nn.AddModules.SAConv.ResNetLayer_SAConv[256, 128, 2, False, 4]       
  3                  -1  1  15371270  ultralytics.nn.AddModules.SAConv.ResNetLayer_SAConv[512, 256, 2, False, 6]       
  4                  -1  1  31495171  ultralytics.nn.AddModules.SAConv.ResNetLayer_SAConv[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_SAConv summary: 625 layers, 69,207,475 parameters, 69,207,475 gradients, 117.1 GFLOPs