RT-DETR改进策略【卷积层】| CVPR-2023 SCConv 空间和通道重建卷积:即插即用,减少冗余计算并提升特征学习
一、本文介绍
本文记录的是
利用ScConv优化RT-DETR的目标检测网络模型
。深度神经网络中存在大量冗余,不仅在密集模型参数中,而且在特征图的空间和通道维度中。
ScConv
模块通过联合减少卷积层中空间和通道的冗余,有效地限制了特征冗余,本文利用
ScConv
模块改进
RT-DETR
,提高了模型的性能和效率。
二、SCConv介绍
SCConv
:针对特征冗余的空间和通道重构卷积
SCConv(Spatial and Channel reconstruction Convolution)
模块是为了解决卷积神经网络中特征冗余导致的计算资源消耗大的问题而提出的,其设计的原理和优势如下:
2.1、原理
-
SCConv由两个单元组成: 空间重建单元(SRU) 和 通道重建单元(CRU) 。 -
SRU
:利用分离和重建操作来挖掘特征的空间冗余。具体来说,通过
Group Normalization(GN)层的缩放因子评估不同特征图的信息含量,将特征图根据权重分为信息丰富的和信息较少的两部分,然后通过交叉重建操作将这两部分进行组合,以减少空间冗余并增强特征的表示。 -
CRU
:利用
Split - Transform - Fuse策略来挖掘特征的通道冗余。首先将空间精炼后的特征图的通道进行分割和挤压,然后通过高效的卷积操作(如GWC和PWC)对分割后的特征图进行变换,以提取高级代表性信息并减少计算成本,最后使用简化的SKNet方法自适应地融合输出特征,从而减少通道维度的冗余。
2.2、优势
-
减少冗余计算
:通过挖掘空间和通道维度的冗余,
SCConv能够减少模型的计算量和参数数量,从而降低计算成本。 - 促进代表性特征学习 : SRU 和 CRU 的设计有助于增强特征的表示能力,生成更具代表性和表达性的特征。
-
通用性和灵活性
:
SCConv是一个即插即用的模块,可以直接替换各种卷积神经网络中的标准卷积,无需对模型架构进行额外的修改。 -
性能提升
:实验结果表明,嵌入
SCConv的模型在降低复杂度和计算成本的同时,能够实现更好的性能,在图像分类和目标检测等任务中超越了其他先进的方法。
三、SCConv的实现代码
SCConv模块
的实现代码如下:
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from ultralytics.nn.modules.conv import LightConv
class GroupBatchnorm2d(nn.Module):
def __init__(self, c_num: int,
group_num: int = 16,
eps: float = 1e-10
):
super(GroupBatchnorm2d, self).__init__()
assert c_num >= group_num
self.group_num = group_num
self.weight = nn.Parameter(torch.randn(c_num, 1, 1))
self.bias = nn.Parameter(torch.zeros(c_num, 1, 1))
self.eps = eps
def forward(self, x):
N, C, H, W = x.size()
x = x.view(N, self.group_num, -1)
mean = x.mean(dim=2, keepdim=True)
std = x.std(dim=2, keepdim=True)
x = (x - mean) / (std + self.eps)
x = x.view(N, C, H, W)
return x * self.weight + self.bias
class SRU(nn.Module):
def __init__(self,
oup_channels: int,
group_num: int = 16,
gate_treshold: float = 0.5,
torch_gn: bool = True
):
super().__init__()
self.gn = nn.GroupNorm(num_channels=oup_channels, num_groups=group_num) if torch_gn else GroupBatchnorm2d(
c_num=oup_channels, group_num=group_num)
self.gate_treshold = gate_treshold
self.sigomid = nn.Sigmoid()
def forward(self, x):
gn_x = self.gn(x)
w_gamma = self.gn.weight / sum(self.gn.weight)
w_gamma = w_gamma.view(1, -1, 1, 1)
reweigts = self.sigomid(gn_x * w_gamma)
# Gate
w1 = torch.where(reweigts > self.gate_treshold, torch.ones_like(reweigts), reweigts)
w2 = torch.where(reweigts > self.gate_treshold, torch.zeros_like(reweigts), reweigts)
x_1 = w1 * x
x_2 = w2 * x
y = self.reconstruct(x_1, x_2)
return y
def reconstruct(self, x_1, x_2):
x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)
x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)
return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)
class CRU(nn.Module):
def __init__(self,
op_channel: int,
alpha: float = 1 / 2,
squeeze_radio: int = 2,
group_size: int = 2,
group_kernel_size: int = 3,
):
super().__init__()
self.up_channel = up_channel = int(alpha * op_channel)
self.low_channel = low_channel = op_channel - up_channel
self.squeeze1 = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)
self.squeeze2 = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)
# up
self.GWC = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1,
padding=group_kernel_size // 2, groups=group_size)
self.PWC1 = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)
# low
self.PWC2 = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1,
bias=False)
self.advavg = nn.AdaptiveAvgPool2d(1)
def forward(self, x):
# Split
up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)
up, low = self.squeeze1(up), self.squeeze2(low)
# Transform
Y1 = self.GWC(up) + self.PWC1(up)
Y2 = torch.cat([self.PWC2(low), low], dim=1)
# Fuse
out = torch.cat([Y1, Y2], dim=1)
out = F.softmax(self.advavg(out), dim=1) * out
out1, out2 = torch.split(out, out.size(1) // 2, dim=1)
return out1 + out2
def autopad(k, p=None, d=1):
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class SCConv(nn.Module):
def __init__(self,
op_channel: int,
group_num: int = 4,
gate_treshold: float = 0.5,
alpha: float = 1 / 2,
squeeze_radio: int = 2,
group_size: int = 2,
group_kernel_size: int = 3,
):
super().__init__()
self.SRU = SRU(op_channel,
group_num=group_num,
gate_treshold=gate_treshold)
self.CRU = CRU(op_channel,
alpha=alpha,
squeeze_radio=squeeze_radio,
group_size=group_size,
group_kernel_size=group_kernel_size)
def forward(self, x):
x = self.SRU(x)
x = self.CRU(x)
return x
def autopad(k, p=None, d=1): # kernel, padding, dilation
"""Pad to 'same' shape outputs."""
if d > 1:
k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
if p is None:
p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
return p
class Conv(nn.Module):
"""Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
default_act = nn.SiLU() # default activation
def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
"""Initialize Conv layer with given arguments including activation."""
super().__init__()
self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
self.bn = nn.BatchNorm2d(c2)
self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
def forward(self, x):
"""Apply convolution, batch normalization and activation to input tensor."""
return self.act(self.bn(self.conv(x)))
def forward_fuse(self, x):
"""Perform transposed convolution of 2D data."""
return self.act(self.conv(x))
class HGBlock_SCConv(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = SCConv(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
四、创新模块
4.1 改进点⭐
模块改进方法
:直接加入
SCConv
(
第五节讲解添加步骤
)。
SCConv
模块加入如下:
4.2 改进点⭐
模块改进方法
:基于
SCConv模块
的
HGBlock
(
第五节讲解添加步骤
)。
第二种改进方法是对
RT-DETR
中的
HGBlock模块
进行改进,并将
SCConv
在加入到
HGBlock
模块中。
改进代码如下:
对
HGBlock
模块进行改进,加入
SCConv模块
,并重命名为
HGBlock_SCConv
class HGBlock_SCConv(nn.Module):
"""
HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
"""
def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=nn.ReLU()):
"""Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
super().__init__()
block = LightConv if lightconv else Conv
self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
self.add = shortcut and c1 == c2
self.cv = SCConv(c2)
def forward(self, x):
"""Forward pass of a PPHGNetV2 backbone layer."""
y = [x]
y.extend(m(y[-1]) for m in self.m)
y = self.cv(self.ec(self.sc(torch.cat(y, 1))))
return y + x if self.add else y
注意❗:在
第五小节
中需要声明的模块名称为:
SCConv
和
HGBlock_SCConv
。
五、添加步骤
5.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
SCConv.py
,将
第三节
中的代码粘贴到此处
5.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .SCConv import *
5.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在指定位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
SCConv
和
HGBlock_SCConv
模块
六、yaml模型文件
6.1 模型改进版本⭐
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-SCConv.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-SCConv.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
中的
HGBlock模块
替换成
SCConv模块
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, SCConv, [512]] # cm, c2, k, light, shortcut
- [-1, 6, SCConv, [512]]
- [-1, 6, SCConv, [512]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
6.2 模型改进版本⭐
此处以
ultralytics/cfg/models/rt-detr/rtdetr-l.yaml
为例,在同目录下创建一个用于自己数据集训练的模型文件
rtdetr-l-HGBlock_SCConv.yaml
。
将
rtdetr-l.yaml
中的内容复制到
rtdetr-l-HGBlock_SCConv.yaml
文件下,修改
nc
数量等于自己数据中目标的数量。
📌 模型的修改方法是将
骨干网络
中的
HGBlock模块
替换成
HGBlock_SCConv模块
。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr
# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, HGStem, [32, 48]] # 0-P2/4
- [-1, 6, HGBlock_SCConv, [48, 128, 3]] # stage 1
- [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- [-1, 6, HGBlock_SCConv, [96, 512, 3]] # stage 2
- [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
- [-1, 6, HGBlock_SCConv, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- [-1, 6, HGBlock_SCConv, [192, 1024, 5, True, True]]
- [-1, 6, HGBlock_SCConv, [192, 1024, 5, True, True]] # stage 3
- [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
- [-1, 6, HGBlock_SCConv, [384, 2048, 5, True, False]] # stage 4
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
- [[-2, -1], 1, Concat, [1]] # cat backbone P4
- [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
- [[-1, 17], 1, Concat, [1]] # cat Y4
- [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
- [[-1, 12], 1, Concat, [1]] # cat Y5
- [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1
- [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)
七、成功运行结果
打印网络模型可以看到
SCConv
和
HGBlock_SCConv
已经加入到模型中,并可以进行训练了。
rtdetr-l-SCConv :
rtdetr-l-SCConv summary: 714 layers, 35,450,179 parameters, 35,450,179 gradients, 116.3 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 155072 ultralytics.nn.modules.block.HGBlock [48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 839296 ultralytics.nn.modules.block.HGBlock [128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 2860032 ultralytics.nn.AddModules.SCConv.SCConv [512, 512]
6 -1 6 2860032 ultralytics.nn.AddModules.SCConv.SCConv [512, 512]
7 -1 6 2860032 ultralytics.nn.AddModules.SCConv.SCConv [512, 512]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [512, 1024, 3, 2, 1, False]
9 -1 6 6708480 ultralytics.nn.modules.block.HGBlock [1024, 384, 2048, 5, 6, True, False]
10 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
11 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 7 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
22 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
23 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
25 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
26 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
28 [21, 24, 27] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-SCConv summary: 714 layers, 35,450,179 parameters, 35,450,179 gradients, 116.3 GFLOPs
rtdetr-l-HGBlock_SCConv :
rtdetr-l-HGBlock_SCConv summary: 747 layers, 46,634,051 parameters, 46,634,051 gradients, 140.0 GFLOPs
from n params module arguments
0 -1 1 25248 ultralytics.nn.modules.block.HGStem [3, 32, 48]
1 -1 6 185152 ultralytics.nn.AddModules.SCConv.HGBlock_SCConv[48, 48, 128, 3, 6]
2 -1 1 1408 ultralytics.nn.modules.conv.DWConv [128, 128, 3, 2, 1, False]
3 -1 6 1315968 ultralytics.nn.AddModules.SCConv.HGBlock_SCConv[128, 96, 512, 3, 6]
4 -1 1 5632 ultralytics.nn.modules.conv.DWConv [512, 512, 3, 2, 1, False]
5 -1 6 3598976 ultralytics.nn.AddModules.SCConv.HGBlock_SCConv[512, 192, 1024, 5, 6, True, False]
6 -1 6 3959424 ultralytics.nn.AddModules.SCConv.HGBlock_SCConv[1024, 192, 1024, 5, 6, True, True]
7 -1 6 3959424 ultralytics.nn.AddModules.SCConv.HGBlock_SCConv[1024, 192, 1024, 5, 6, True, True]
8 -1 1 11264 ultralytics.nn.modules.conv.DWConv [1024, 1024, 3, 2, 1, False]
9 -1 6 14316800 ultralytics.nn.AddModules.SCConv.HGBlock_SCConv[1024, 384, 2048, 5, 6, True, False]
10 -1 1 524800 ultralytics.nn.modules.conv.Conv [2048, 256, 1, 1, None, 1, 1, False]
11 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
12 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
13 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
14 7 1 262656 ultralytics.nn.modules.conv.Conv [1024, 256, 1, 1, None, 1, 1, False]
15 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
16 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
17 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
18 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
19 3 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
21 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
22 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
23 [-1, 17] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
25 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
26 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 3 2232320 ultralytics.nn.modules.block.RepC3 [512, 256, 3]
28 [21, 24, 27] 1 7303907 ultralytics.nn.modules.head.RTDETRDecoder [1, [256, 256, 256]]
rtdetr-l-HGBlock_SCConv summary: 747 layers, 46,634,051 parameters, 46,634,051 gradients, 140.0 GFLOPs