学习资源站

RT-DETR改进策略【卷积层】ECCV-2024小波卷积WTConv增大感受野,降低参数量计算量,独家创新助力涨点-

RT-DETR改进策略【卷积层】| ECCV-2024 小波卷积WTConv 增大感受野,降低参数量计算量,独家创新助力涨点

一、本文介绍

本文记录的是 利用 小波卷积WTConv 模块优化 RT-DETR 的目标检测网络模型 WTConv 的目的是在 不出现过参数化的情况下有效地增加卷积的感受野 ,从而解决了 CNN 在感受野扩展中的 参数膨胀 问题。本文将其加入到 深度可分离卷积 中,有效降低模型参数量和计算量,并 二次创新 使模块更好地捕捉低频特征,增强网络性能。



二、小波卷积WTConv介绍

Wavelet Convolutions for Large Receptive Fields

2.1 出发点

  • 解决卷积核增大的问题 :在卷积神经网络(CNNs)中,为了模仿视觉Transformer(ViTs)自注意力块的全局感受野,尝试增加卷积核大小,但这种方法在达到全局感受野之前就遇到了上限并饱和,且会导致过参数化。
  • 利用信号处理工具 :思考能否利用信号处理工具在不出现过参数化的情况下有效地增加卷积的感受野,从而提出利用小波变换(Wavelet Transform,WT)来解决该问题。

在这里插入图片描述

2.2 原理

2.2.1 基于小波变换的卷积操作

  • 小波变换的卷积表示 :采用 Haar小波变换(Haar WT) ,它在一个空间维度(宽度或高度)上的一级变换可通过特定的深度卷积核和下采样操作实现。例如,在2D情况下,使用一组特定的四个滤波器进行深度卷积操作,这些滤波器包括一个低通滤波器 f L L f_{LL} f LL 和三个高通滤波器 f L H f_{LH} f L H f H L f_{HL} f H L f H H f_{HH} f HH
  • 逆小波变换 :由于这些滤波器构成正交基,逆小波变换可通过转置卷积实现。
  • 级联小波分解 :通过递归地分解低频分量来实现,每一级分解都会增加频率分辨率并降低低频的空间分辨率。

2.2.2 小波域的卷积操作

  • 分离频率分量卷积 :首先使用 WT 对输入的低频和高频内容进行滤波和降尺度,然后在不同的频率映射上进行小核深度卷积,最后使用逆WT构建输出。这个过程不仅分离了频率分量之间的卷积,还允许较小的核在原始输入的较大区域上操作,从而增加了感受野。
  • 多级别操作 :采用级联原则,对每一级的低频分量进行WT分解,然后进行卷积操作,最后将不同频率的输出进行组合。组合时利用WT和其逆是线性操作的性质,将各级卷积的结果求和。

在这里插入图片描述

2.3 结构

  • 作为深度卷积的替代层 WTConv 被设计为可以直接替换 深度卷积层 ,能够在任何给定的CNN架构中使用,无需额外修改。

2.4 优势

  • 参数增长缓慢 :对于 k × k k×k k × k 的感受野,其可训练参数的数量仅与 k k k 成对数增长,相比一些最近的方法(参数增长为二次方),能够在不出现过参数化的情况下获得非常大的感受野。
  • 更好地捕捉低频 :通过对输入低频分量的重复 WT 分解,强调了低频信息,使得 WTConv层 能够比标准卷积更好地捕捉低频,这与已知的卷积层通常对高频响应的情况形成补充。

论文: https://arxiv.org/pdf/2407.05848
源码: https://github.com/BGU-CS-VIL/WTConv

三、小波卷积的实现代码

小波卷积及其改进的实现代码如下:

import pywt
import pywt.data
import torch
from torch import nn
from functools import partial
import torch.nn.functional as F

# 论文地址 https://arxiv.org/pdf/2407.05848
def create_wavelet_filter(wave, in_size, out_size, type=torch.float):
    w = pywt.Wavelet(wave)
    dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)
    dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)
    dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
                               dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
                               dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
                               dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)

    dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)

    rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])
    rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])
    rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
                               rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
                               rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
                               rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)

    rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)

    return dec_filters, rec_filters

def wavelet_transform(x, filters):
    b, c, h, w = x.shape
    pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
    x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)
    x = x.reshape(b, c, 4, h // 2, w // 2)
    return x

def inverse_wavelet_transform(x, filters):
    b, c, _, h_half, w_half = x.shape
    pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
    x = x.reshape(b, c * 4, h_half, w_half)
    x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)
    return x

# Wavelet Transform Conv(WTConv2d)
class WTConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):
        super(WTConv2d, self).__init__()

        assert in_channels == out_channels

        self.in_channels = in_channels
        self.wt_levels = wt_levels
        self.stride = stride
        self.dilation = 1

        self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)
        self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)
        self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)

        self.wt_function = partial(wavelet_transform, filters=self.wt_filter)
        self.iwt_function = partial(inverse_wavelet_transform, filters=self.iwt_filter)

        self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1,
                                   groups=in_channels, bias=bias)
        self.base_scale = _ScaleModule([1, in_channels, 1, 1])

        self.wavelet_convs = nn.ModuleList(
            [nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1,
                       groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)]
        )
        self.wavelet_scale = nn.ModuleList(
            [_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)]
        )

        if self.stride > 1:
            self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)
            self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride,
                                                   groups=in_channels)
        else:
            self.do_stride = None

    def forward(self, x):

        x_ll_in_levels = []
        x_h_in_levels = []
        shapes_in_levels = []

        curr_x_ll = x

        for i in range(self.wt_levels):
            curr_shape = curr_x_ll.shape
            shapes_in_levels.append(curr_shape)
            if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):
                curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)
                curr_x_ll = F.pad(curr_x_ll, curr_pads)

            curr_x = self.wt_function(curr_x_ll)
            curr_x_ll = curr_x[:, :, 0, :, :]

            shape_x = curr_x.shape
            curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])
            curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))
            curr_x_tag = curr_x_tag.reshape(shape_x)

            x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])
            x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])

        next_x_ll = 0

        for i in range(self.wt_levels - 1, -1, -1):
            curr_x_ll = x_ll_in_levels.pop()
            curr_x_h = x_h_in_levels.pop()
            curr_shape = shapes_in_levels.pop()

            curr_x_ll = curr_x_ll + next_x_ll

            curr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)
            next_x_ll = self.iwt_function(curr_x)

            next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]

        x_tag = next_x_ll
        assert len(x_ll_in_levels) == 0

        x = self.base_scale(self.base_conv(x))
        x = x + x_tag

        if self.do_stride is not None:
            x = self.do_stride(x)

        return x

class _ScaleModule(nn.Module):
    def __init__(self, dims, init_scale=1.0, init_bias=0):
        super(_ScaleModule, self).__init__()
        self.dims = dims
        self.weight = nn.Parameter(torch.ones(*dims) * init_scale)
        self.bias = None

    def forward(self, x):
        return torch.mul(self.weight, x)

class DepthwiseSeparableConvWithWTConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, kernel_size=3):
        super(DepthwiseSeparableConvWithWTConv2d, self).__init__()

        # 深度卷积:使用 WTConv2d 替换 3x3 卷积
        self.depthwise = WTConv2d(in_channels, in_channels, kernel_size=kernel_size)

        # 逐点卷积:使用 1x1 卷积
        self.pointwise = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)

    def forward(self, x):
        x = self.depthwise(x)
        x = self.pointwise(x)
        return x

def autopad(k, p=None, d=1):  # kernel, padding, dilation
    """Pad to 'same' shape outputs."""
    if d > 1:
        k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k]  # actual kernel-size
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p

class Conv(nn.Module):
    """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
 
    default_act = nn.SiLU()  # default activation
 
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
        """Initialize Conv layer with given arguments including activation."""
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
 
    def forward(self, x):
        """Apply convolution, batch normalization and activation to input tensor."""
        return self.act(self.bn(self.conv(x)))
 
    def forward_fuse(self, x):
        """Perform transposed convolution of 2D data."""
        return self.act(self.conv(x))

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = DepthwiseSeparableConvWithWTConv2d(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_WTConv2d(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)


四、创新模块

4.1 改进点1⭐

模块改进方法 :加入 WTConv2d模块 第五节讲解添加步骤 )。

WTConv2d模块 添加后如下:

在这里插入图片描述

4.2 改进点2⭐

模块改进方法 :基于 DepthwiseSeparableConvWithWTConv2d模块 ResNetLayer 第五节讲解添加步骤 )。

第二种改进方法是对 RT-DETR 中的 ResNetLayer模块 进行改进,并将 DepthwiseSeparableConvWithWTConv2d 在加入到 ResNetLayer 模块中。

改进代码如下:

DepthwiseSeparableConvWithWTConv2d 加入到 ResNetBlock 模块中,并将 ResNetLayer 重命名为 ResNetLayer_WTConv2d

class ResNetBlock(nn.Module):
    """ResNet block with standard convolution layers."""

    def __init__(self, c1, c2, s=1, e=4):
        """Initialize convolution with given parameters."""
        super().__init__()
        c3 = e * c2
        self.cv1 = Conv(c1, c2, k=1, s=1, act=True)
        self.cv2 = self.cv2 = Conv(c2, c2, k=3, s=s, p=1, act=True)
        self.cv3 = DepthwiseSeparableConvWithWTConv2d(c2, c3)
        self.shortcut = nn.Sequential(Conv(c1, c3, k=1, s=s, act=False)) if s != 1 or c1 != c3 else nn.Identity()

    def forward(self, x):
        """Forward pass through the ResNet block."""
        return F.relu(self.cv3(self.cv2(self.cv1(x))) + self.shortcut(x))

class ResNetLayer_WTConv2d(nn.Module):
    """ResNet layer with multiple ResNet blocks."""

    def __init__(self, c1, c2, s=1, is_first=False, n=1, e=4):
        """Initializes the ResNetLayer given arguments."""
        super().__init__()
        self.is_first = is_first

        if self.is_first:
            self.layer = nn.Sequential(
                Conv(c1, c2, k=7, s=2, p=3, act=True), nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
            )
        else:
            blocks = [ResNetBlock(c1, c2, s, e=e)]
            blocks.extend([ResNetBlock(e * c2, c2, 1, e=e) for _ in range(n - 1)])
            self.layer = nn.Sequential(*blocks)

    def forward(self, x):
        """Forward pass through the ResNet layer."""
        return self.layer(x)
 

在这里插入图片描述

注意❗:在 第五小节 中需要声明的模块名称为: WTConv2d ResNetLayer_WTConv2d


五、添加步骤

5.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 WTConv.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

5.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .WTConv import *

在这里插入图片描述

5.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 WTConv2d ResNetLayer_WTConv2d 模块

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述


六、yaml模型文件

6.1 模型改进版本1

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-WTConv2d.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-WTConv2d.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 HGBlock模块 替换成 WTConv2d模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, HGStem, [32, 48]] # 0-P2/4
  - [-1, 6, HGBlock, [48, 128, 3]] # stage 1

  - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
  - [-1, 6, HGBlock, [96, 512, 3]] # stage 2

  - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P4/16
  - [-1, 6, WTConv2d, [512]] # cm, c2, k, light, shortcut
  - [-1, 6, WTConv2d, [512]]
  - [-1, 6, WTConv2d, [512]] # stage 3

  - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P5/32
  - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 10 input_proj.2
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 12, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [7, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14 input_proj.1
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 16, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]] # 17, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.0
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (21), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 22, downsample_convs.0
  - [[-1, 17], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (24), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 25, downsample_convs.1
  - [[-1, 12], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (27), pan_blocks.1

  - [[21, 24, 27], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)

6.2 模型改进版本2⭐

此处以 ultralytics/cfg/models/rt-detr/rtdetr-resnet50.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-ResNetLayer_WTConv2d.yaml

rtdetr-resnet50.yaml 中的内容复制到 rtdetr-ResNetLayer_WTConv2d.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 中的所有 ResNetLayer模块 替换成 ResNetLayer_WTConv2d模块

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.

# Parameters
nc: 1 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, ResNetLayer_WTConv2d, [3, 64, 1, True, 1]] # 0
  - [-1, 1, ResNetLayer_WTConv2d, [64, 64, 1, False, 3]] # 1
  - [-1, 1, ResNetLayer_WTConv2d, [256, 128, 2, False, 4]] # 2
  - [-1, 1, ResNetLayer_WTConv2d, [512, 256, 2, False, 6]] # 3
  - [-1, 1, ResNetLayer_WTConv2d, [1024, 512, 2, False, 3]] # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 5
  - [-1, 1, AIFI, [1024, 8]]
  - [-1, 1, Conv, [256, 1, 1]] # 7

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 9
  - [[-2, -1], 1, Concat, [1]]
  - [-1, 3, RepC3, [256]] # 11
  - [-1, 1, Conv, [256, 1, 1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 14
  - [[-2, -1], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, RepC3, [256]] # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]] # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]] # cat Y4
  - [-1, 3, RepC3, [256]] # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]] # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]] # cat Y5
  - [-1, 3, RepC3, [256]] # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]] # Detect(P3, P4, P5)


七、成功运行结果

打印网络模型可以看到 WTConv2d ResNetLayer_WTConv2d 已经加入到模型中,并可以进行训练了。

rtdetr-l-WTConv2d

rtdetr-l-WTConv2d summary: 642 layers, 28,372,291 parameters, 28,077,379 gradients, 90.4 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1     25248  ultralytics.nn.modules.block.HGStem          [3, 32, 48]                   
  1                  -1  6    155072  ultralytics.nn.modules.block.HGBlock         [48, 48, 128, 3, 6]           
  2                  -1  1      1408  ultralytics.nn.modules.conv.DWConv           [128, 128, 3, 2, 1, False]    
  3                  -1  6    839296  ultralytics.nn.modules.block.HGBlock         [128, 96, 512, 3, 6]          
  4                  -1  1      5632  ultralytics.nn.modules.conv.DWConv           [512, 512, 3, 2, 1, False]    
  5                  -1  6    500736  ultralytics.nn.AddModules.WTConv.WTConv2d    [512, 512]                    
  6                  -1  6    500736  ultralytics.nn.AddModules.WTConv.WTConv2d    [512, 512]                    
  7                  -1  6    500736  ultralytics.nn.AddModules.WTConv.WTConv2d    [512, 512]                    
  8                  -1  1     11264  ultralytics.nn.modules.conv.DWConv           [512, 1024, 3, 2, 1, False]   
  9                  -1  6   6708480  ultralytics.nn.modules.block.HGBlock         [1024, 384, 2048, 5, 6, True, False]
 10                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
 11                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   7  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 19                   3  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 20            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 21                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 22                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 23            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 24                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 25                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 26            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 27                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 28        [21, 24, 27]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-WTConv2d summary: 642 layers, 28,372,291 parameters, 28,077,379 gradients, 90.4 GFLOPs

rtdetr-ResNetLayer_WTConv2d

rtdetr-ResNetLayer_WTConv2d summary: 673 layers, 43,045,987 parameters, 42,925,155 gradients, 130.5 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1      9536  ultralytics.nn.AddModules.WTConv.ResNetLayer_WTConv2d[3, 64, 1, True, 1]           
  1                  -1  1    230208  ultralytics.nn.AddModules.WTConv.ResNetLayer_WTConv2d[64, 64, 1, False, 3]         
  2                  -1  1   1257984  ultralytics.nn.AddModules.WTConv.ResNetLayer_WTConv2d[256, 128, 2, False, 4]       
  3                  -1  1   7213568  ultralytics.nn.AddModules.WTConv.ResNetLayer_WTConv2d[512, 256, 2, False, 6]       
  4                  -1  1  15079936  ultralytics.nn.AddModules.WTConv.ResNetLayer_WTConv2d[1024, 512, 2, False, 3]      
  5                  -1  1    524800  ultralytics.nn.modules.conv.Conv             [2048, 256, 1, 1, None, 1, 1, False]
  6                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  7                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  8                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  9                   3  1    262656  ultralytics.nn.modules.conv.Conv             [1024, 256, 1, 1, None, 1, 1, False]
 10            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 11                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 12                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 14                   2  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
 15            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 16                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 17                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 18            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 19                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 20                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 21             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 22                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 23        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-ResNetLayer_WTConv2d summary: 673 layers, 43,045,987 parameters, 42,925,155 gradients, 130.5 GFLOPs