学习资源站

RT-DETR改进策略【Backbone主干网络】 替换骨干为PoolFormer,基于平均池化的Token混合器,通过聚合局部邻域特征实现信息交互-

RT-DETR改进策略【Backbone/主干网络】| 替换骨干为PoolFormer,基于平均池化的Token混合器,通过聚合局部邻域特征实现信息交互

一、本文介绍

本文记录的是 基于PoolFormer的RT-DETR骨干网络改进方法研究

PoolFormer 提出了创新的 MetaFormer通用架构 ,通过极 简单的池化操作实现Token混合 ,能 以低参数和计算成本高效捕捉图像全局与局部特征 。将 PoolFormer 应用到 RT-DETR 的骨干网络中,通过其 分层结构和Token混合机制 ,实现精度与效率的平衡优化。

本文在 RT-DETR 的基础上配置了原论文中 poolformer_s12 , poolformer_s24 , poolformer_s36 , poolformer_m48 , poolformer_m36 五种模型,以满足不同的需求。



二、PoolFormer原理介绍

MetaFormer Is Actually What You Need for Vision

2.1 设计出发点

在计算机视觉领域,Transformer模型取得了显著成功,普遍认为其基于注意力的Token混合模块是性能的关键。然而,后续研究发现,用空间MLP替换注意力模块后,模型仍能保持较强性能。

由此推测,Transformer的整体架构(而非特定Token混合器)可能才是性能的核心。为验证这一假设,研究者尝试用 极简单的非参数操作——池化(Pooling) 作为Token混合器,构建了PoolFormer模型,旨在证明通用架构的重要性,并探索极简Token混合器下的模型潜力。

2.2 结构原理

PoolFormer基于 MetaFormer通用架构 设计,该架构抽象自Transformer,核心包含以下组件:

  1. 输入嵌入(Input Embedding)
    对输入图像进行分块嵌入,转换为序列长度为 N N N 、维度为 C C C 的Token特征 X ∈ R N × C X \in \mathbb{R}^{N \times C} X R N × C ,与ViT的Patch Embedding类似。

  2. MetaFormer Block
    由两个残差子块组成:

    • Token混合子块 :核心组件为池化层,采用平均池化对局部Token特征进行聚合,并通过残差连接减去输入本身,实现特征交互。池化操作无参数,计算复杂度与Token数量呈线性关系,远低于注意力或MLP的二次复杂度。
    • 通道MLP子块 :包含两层全连接层,通过GELU激活函数实现通道间信息交互,结构与Transformer中的MLP模块一致。
  3. 分层架构(Hierarchical Structure)
    借鉴CNN和分层Transformer的设计,PoolFormer分为4个阶段,逐步降低特征图分辨率(从 H / 4 × W / 4 H/4 \times W/4 H /4 × W /4 H / 32 × W / 32 H/32 \times W/32 H /32 × W /32 ),并逐层增加通道维度。这种设计使模型能处理长序列输入,同时捕获多尺度特征。

在这里插入图片描述

2.3 优势

  1. 验证MetaFormer架构的核心作用
    通过极简单的池化操作替代注意力/MLP,PoolFormer在ImageNet-1K上实现82.1%的Top-1准确率,超越DeiT-B和ResMLP-B24等基线模型,且参数和计算量(MACs)分别减少35%/52%和50%/62%。这证明MetaFormer架构本身是性能的关键,而非特定Token混合器。

  2. 高效的计算与参数效率

    • 池化操作无学习参数,计算复杂度为 O ( N ) O(N) O ( N ) N N N 为Token数),而注意力和空间MLP为 O ( N 2 ) O(N^2) O ( N 2 ) ,因此PoolFormer可处理更长序列。
    • 分层架构进一步降低计算量,例如PoolFormer-M36仅需8.8G MACs和56M参数,优于同类Transformer和MLP模型。
  3. 泛化能力与多任务适应性

    • 在目标检测(COCO)、实例分割和语义分割(ADE20K)任务中,PoolFormer作为 backbone 均优于ResNet和部分Transformer基线。例如,在COCO上,PoolFormer-S12的RetinaNet检测AP比ResNet-18高4.4%。
    • 消融实验表明,即使替换池化为随机矩阵或深度卷积,模型仍保持竞争力,验证了MetaFormer对不同Token混合器的兼容性。

论文: https://arxiv.org/abs/2111.11418
源码: https://github.com/sail-sg/poolformer

三、PoolFormer的实现代码

PoolFormer 的实现代码如下:

"""
PoolFormer implementation
"""
import os
import copy
import torch
import torch.nn as nn
import numpy as np
 
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
from timm.models.layers import DropPath, trunc_normal_, to_2tuple
from timm.models.registry import register_model
 
__all__ = ['poolformer_s12', 'poolformer_s24', 'poolformer_s36', 'poolformer_m48', 'poolformer_m36']
 
def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'pool_size': None,
        'crop_pct': .95, 'interpolation': 'bicubic',
        'mean': IMAGENET_DEFAULT_MEAN, 'std': IMAGENET_DEFAULT_STD,
        'classifier': 'head',
        **kwargs
    }

default_cfgs = {
    'poolformer_s': _cfg(crop_pct=0.9),
    'poolformer_m': _cfg(crop_pct=0.95),
}

class PatchEmbed(nn.Module):
    """
    Patch Embedding that is implemented by a layer of conv.
    Input: tensor in shape [B, C, H, W]
    Output: tensor in shape [B, C, H/stride, W/stride]
    """
    def __init__(self, patch_size=16, stride=16, padding=0,
                 in_chans=3, embed_dim=768, norm_layer=None):
        super().__init__()
        patch_size = to_2tuple(patch_size)
        stride = to_2tuple(stride)
        padding = to_2tuple(padding)
        self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size,
                              stride=stride, padding=padding)
        self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
 
    def forward(self, x):
        x = self.proj(x)
        x = self.norm(x)
        return x

class LayerNormChannel(nn.Module):
    """
    LayerNorm only for Channel Dimension.
    Input: tensor in shape [B, C, H, W]
    """
    def __init__(self, num_channels, eps=1e-05):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(num_channels))
        self.bias = nn.Parameter(torch.zeros(num_channels))
        self.eps = eps
 
    def forward(self, x):
        u = x.mean(1, keepdim=True)
        s = (x - u).pow(2).mean(1, keepdim=True)
        x = (x - u) / torch.sqrt(s + self.eps)
        x = self.weight.unsqueeze(-1).unsqueeze(-1) * x \
            + self.bias.unsqueeze(-1).unsqueeze(-1)
        return x

class GroupNorm(nn.GroupNorm):
    """
    Group Normalization with 1 group.
    Input: tensor in shape [B, C, H, W]
    """
    def __init__(self, num_channels, **kwargs):
        super().__init__(1, num_channels, **kwargs)

class Pooling(nn.Module):
    """
    Implementation of pooling for PoolFormer
    --pool_size: pooling size
    """
    def __init__(self, pool_size=3):
        super().__init__()
        self.pool = nn.AvgPool2d(
            pool_size, stride=1, padding=pool_size//2, count_include_pad=False)
 
    def forward(self, x):
        return self.pool(x) - x

class Mlp(nn.Module):
    """
    Implementation of MLP with 1*1 convolutions.
    Input: tensor with shape [B, C, H, W]
    """
    def __init__(self, in_features, hidden_features=None,
                 out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Conv2d(in_features, hidden_features, 1)
        self.act = act_layer()
        self.fc2 = nn.Conv2d(hidden_features, out_features, 1)
        self.drop = nn.Dropout(drop)
        self.apply(self._init_weights)
 
    def _init_weights(self, m):
        if isinstance(m, nn.Conv2d):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
 
    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        x = self.drop(x)
        x = self.fc2(x)
        x = self.drop(x)
        return x

class PoolFormerBlock(nn.Module):
    """
    Implementation of one PoolFormer block.
    --dim: embedding dim
    --pool_size: pooling size
    --mlp_ratio: mlp expansion ratio
    --act_layer: activation
    --norm_layer: normalization
    --drop: dropout rate
    --drop path: Stochastic Depth,
        refer to https://arxiv.org/abs/1603.09382
    --use_layer_scale, --layer_scale_init_value: LayerScale,
        refer to https://arxiv.org/abs/2103.17239
    """
    def __init__(self, dim, pool_size=3, mlp_ratio=4.,
                 act_layer=nn.GELU, norm_layer=GroupNorm,
                 drop=0., drop_path=0.,
                 use_layer_scale=True, layer_scale_init_value=1e-5):
 
        super().__init__()
 
        self.norm1 = norm_layer(dim)
        self.token_mixer = Pooling(pool_size=pool_size)
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim,
                       act_layer=act_layer, drop=drop)
 
        # The following two techniques are useful to train deep PoolFormers.
        self.drop_path = DropPath(drop_path) if drop_path > 0. \
            else nn.Identity()
        self.use_layer_scale = use_layer_scale
        if use_layer_scale:
            self.layer_scale_1 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            self.layer_scale_2 = nn.Parameter(
                layer_scale_init_value * torch.ones((dim)), requires_grad=True)
 
    def forward(self, x):
        if self.use_layer_scale:
            x = x + self.drop_path(
                self.layer_scale_1.unsqueeze(-1).unsqueeze(-1)
                * self.token_mixer(self.norm1(x)))
            x = x + self.drop_path(
                self.layer_scale_2.unsqueeze(-1).unsqueeze(-1)
                * self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.token_mixer(self.norm1(x)))
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        return x

def basic_blocks(dim, index, layers,
                 pool_size=3, mlp_ratio=4.,
                 act_layer=nn.GELU, norm_layer=GroupNorm,
                 drop_rate=.0, drop_path_rate=0.,
                 use_layer_scale=True, layer_scale_init_value=1e-5):
    """
    generate PoolFormer blocks for a stage
    return: PoolFormer blocks
    """
    blocks = []
    for block_idx in range(layers[index]):
        block_dpr = drop_path_rate * (
            block_idx + sum(layers[:index])) / (sum(layers) - 1)
        blocks.append(PoolFormerBlock(
            dim, pool_size=pool_size, mlp_ratio=mlp_ratio,
            act_layer=act_layer, norm_layer=norm_layer,
            drop=drop_rate, drop_path=block_dpr,
            use_layer_scale=use_layer_scale,
            layer_scale_init_value=layer_scale_init_value,
            ))
    blocks = nn.Sequential(*blocks)
 
    return blocks

class PoolFormer(nn.Module):
    """
    PoolFormer, the main class of our model
    --layers: [x,x,x,x], number of blocks for the 4 stages
    --embed_dims, --mlp_ratios, --pool_size: the embedding dims, mlp ratios and
        pooling size for the 4 stages
    --downsamples: flags to apply downsampling or not
    --norm_layer, --act_layer: define the types of normalization and activation
    --num_classes: number of classes for the image classification
    --in_patch_size, --in_stride, --in_pad: specify the patch embedding
        for the input image
    --down_patch_size --down_stride --down_pad:
        specify the downsample (patch embed.)
    --fork_feat: whether output features of the 4 stages, for dense prediction
    --init_cfg, --pretrained:
        for mmdetection and mmsegmentation to load pretrained weights
    """
    def __init__(self, layers, embed_dims=None,
                 mlp_ratios=None, downsamples=None,
                 pool_size=3,
                 norm_layer=GroupNorm, act_layer=nn.GELU,
                 num_classes=1000,
                 in_patch_size=7, in_stride=4, in_pad=2,
                 down_patch_size=3, down_stride=2, down_pad=1,
                 drop_rate=0., drop_path_rate=0.,
                 use_layer_scale=True, layer_scale_init_value=1e-5,
                 fork_feat=True,
                 init_cfg=None,
                 pretrained=None,
                 **kwargs):
 
        super().__init__()
 
        if not fork_feat:
            self.num_classes = num_classes
        self.fork_feat = fork_feat
 
        self.patch_embed = PatchEmbed(
            patch_size=in_patch_size, stride=in_stride, padding=in_pad,
            in_chans=3, embed_dim=embed_dims[0])
 
        # set the main block in network
        network = []
        for i in range(len(layers)):
            stage = basic_blocks(embed_dims[i], i, layers,
                                 pool_size=pool_size, mlp_ratio=mlp_ratios[i],
                                 act_layer=act_layer, norm_layer=norm_layer,
                                 drop_rate=drop_rate,
                                 drop_path_rate=drop_path_rate,
                                 use_layer_scale=use_layer_scale,
                                 layer_scale_init_value=layer_scale_init_value)
            network.append(stage)
            if i >= len(layers) - 1:
                break
            if downsamples[i] or embed_dims[i] != embed_dims[i+1]:
                # downsampling between two stages
                network.append(
                    PatchEmbed(
                        patch_size=down_patch_size, stride=down_stride,
                        padding=down_pad,
                        in_chans=embed_dims[i], embed_dim=embed_dims[i+1]
                        )
                    )
 
        self.network = nn.ModuleList(network)
 
        if self.fork_feat:
            # add a norm layer for each output
            self.out_indices = [0, 2, 4, 6]
            for i_emb, i_layer in enumerate(self.out_indices):
                if i_emb == 0 and os.environ.get('FORK_LAST3', None):
                    # TODO: more elegant way
                    """For RetinaNet, `start_level=1`. The first norm layer will not used.
                    cmd: `FORK_LAST3=1 python -m torch.distributed.launch ...`
                    """
                    layer = nn.Identity()
                else:
                    layer = norm_layer(embed_dims[i_emb])
                layer_name = f'norm{i_layer}'
                self.add_module(layer_name, layer)
        else:
            # Classifier head
            self.norm = norm_layer(embed_dims[-1])
            self.head = nn.Linear(
                embed_dims[-1], num_classes) if num_classes > 0 \
                else nn.Identity()
        self.init_cfg = copy.deepcopy(init_cfg)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 224, 224))]
 
    def reset_classifier(self, num_classes):
        self.num_classes = num_classes
        self.head = nn.Linear(
            self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
 
    def forward_embeddings(self, x):
        x = self.patch_embed(x)
        return x
 
    def forward_tokens(self, x):
        outs = []
        for idx, block in enumerate(self.network):
            x = block(x)
            if self.fork_feat and idx in self.out_indices:
                norm_layer = getattr(self, f'norm{idx}')
                x_out = norm_layer(x)
                outs.append(x_out)
        return outs
 
    def forward(self, x):
        # input embedding
        x = self.forward_embeddings(x)
        # through backbone
        x = self.forward_tokens(x)
        return x

model_urls = {
    "poolformer_s12": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s12.pth.tar",
    "poolformer_s24": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s24.pth.tar",
    "poolformer_s36": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_s36.pth.tar",
    "poolformer_m36": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m36.pth.tar",
    "poolformer_m48": "https://github.com/sail-sg/poolformer/releases/download/v1.0/poolformer_m48.pth.tar",
}
 
def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict
 
def poolformer_s12(pretrained=False, **kwargs):
    """
    PoolFormer-S12 model, Params: 12M
    --layers: [x,x,x,x], numbers of layers for the four stages
    --embed_dims, --mlp_ratios:
        embedding dims and mlp ratios for the four stages
    --downsamples: flags to apply downsampling or not in four blocks
    """
    layers = [2, 2, 6, 2]
    embed_dims = [64, 128, 320, 512]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims,
        mlp_ratios=mlp_ratios, downsamples=downsamples,
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_s']
    if pretrained:
        url = model_urls['poolformer_s12']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model
 
def poolformer_s24(pretrained=False, **kwargs):
    """
    PoolFormer-S24 model, Params: 21M
    """
    layers = [4, 4, 12, 4]
    embed_dims = [64, 128, 320, 512]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims,
        mlp_ratios=mlp_ratios, downsamples=downsamples,
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_s']
    if pretrained:
        url = model_urls['poolformer_s24']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model
 
def poolformer_s36(pretrained=False, **kwargs):
    """
    PoolFormer-S36 model, Params: 31M
    """
    layers = [6, 6, 18, 6]
    embed_dims = [64, 128, 320, 512]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims,
        mlp_ratios=mlp_ratios, downsamples=downsamples,
        layer_scale_init_value=1e-6,
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_s']
    if pretrained:
        url = model_urls['poolformer_s36']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model
 
def poolformer_m36(pretrained=False, **kwargs):
    """
    PoolFormer-M36 model, Params: 56M
    """
    layers = [6, 6, 18, 6]
    embed_dims = [96, 192, 384, 768]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims,
        mlp_ratios=mlp_ratios, downsamples=downsamples,
        layer_scale_init_value=1e-6,
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_m']
    if pretrained:
        url = model_urls['poolformer_m36']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model

@register_model
def poolformer_m48(pretrained=False, **kwargs):
    """
    PoolFormer-M48 model, Params: 73M
    """
    layers = [8, 8, 24, 8]
    embed_dims = [96, 192, 384, 768]
    mlp_ratios = [4, 4, 4, 4]
    downsamples = [True, True, True, True]
    model = PoolFormer(
        layers, embed_dims=embed_dims,
        mlp_ratios=mlp_ratios, downsamples=downsamples,
        layer_scale_init_value=1e-6,
        **kwargs)
    model.default_cfg = default_cfgs['poolformer_m']
    if pretrained:
        url = model_urls['poolformer_m48']
        checkpoint = torch.hub.load_state_dict_from_url(url=url, map_location="cpu", check_hash=True)
        model.load_state_dict(update_weight(model.state_dict(), checkpoint))
    return model
 
if __name__ == '__main__':
    model = poolformer_s12(pretrained=True)
    inputs = torch.randn((1, 3, 640, 640))
    for i in model(inputs):
        print(i.size())

四、修改步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 PoolFormer.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .PoolFormer import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要添加各模块类。

① 首先:导入模块

在这里插入图片描述

② 在BaseModel类的predict函数中,在如下两处位置中去掉 embed 参数:

在这里插入图片描述

③ 在BaseModel类的_predict_once函数,替换如下代码:

    def _predict_once(self, x, profile=False, visualize=False):
        """
        Perform a forward pass through the network.

        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.

        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt = [], []  # outputs
        for m in self.model:
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            x = m(x)  # run
            y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

在这里插入图片描述

④ 将 RTDETRDetectionModel类 中的 predict函数 完整替换:

    def predict(self, x, profile=False, visualize=False, batch=None, augment=False):
        """
        Perform a forward pass through the model.

        Args:
            x (torch.Tensor): The input tensor.
            profile (bool, optional): If True, profile the computation time for each layer. Defaults to False.
            visualize (bool, optional): If True, save feature maps for visualization. Defaults to False.
            batch (dict, optional): Ground truth data for evaluation. Defaults to None.
            augment (bool, optional): If True, perform data augmentation during inference. Defaults to False.

        Returns:
            (torch.Tensor): Model's output tensor.
        """
        y, dt = [], []  # outputs
        for m in self.model[:-1]:  # except the head part
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # for i in x:
                #     if i is not None:
                #         print(i.size())
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        head = self.model[-1]
        x = head([y[j] for j in head.f], batch)  # head inference
        return x

在这里插入图片描述

⑤ 在 parse_model函数 如下位置替换如下代码:

    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<45}{'arguments':<30}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a

替换后如下:

在这里插入图片描述

⑥ 在 parse_model 函数,添加如下代码。

elif m in {poolformer_s12, poolformer_s24, poolformer_s36, poolformer_m36, poolformer_m48,}:
    m = m(*args)  
    c2 = m.channel
    backbone = True

在这里插入图片描述

⑦ 在 parse_model函数 如下位置替换如下代码:

    	if isinstance(c2, list):
            backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        
        m_.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m_.np:10.0f}  {t:<45}{str(args):<30}')  # print
        save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list):
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

在这里插入图片描述

⑧ 在 ultralytics\nn\autobackend.py 文件的 AutoBackend类 中的 forward函数 ,完整替换如下代码:

    def forward(self, im, augment=False, visualize=False):
        """
        Runs inference on the YOLOv8 MultiBackend model.

        Args:
            im (torch.Tensor): The image tensor to perform inference on.
            augment (bool): whether to perform data augmentation during inference, defaults to False
            visualize (bool): whether to visualize the output predictions, defaults to False

        Returns:
            (tuple): Tuple containing the raw output tensor, and processed output for visualization (if visualize=True)
        """
        b, ch, h, w = im.shape  # batch, channel, height, width
        if self.fp16 and im.dtype != torch.float16:
            im = im.half()  # to FP16
        if self.nhwc:
            im = im.permute(0, 2, 3, 1)  # torch BCHW to numpy BHWC shape(1,320,192,3)

        if self.pt or self.nn_module:  # PyTorch
            y = self.model(im, augment=augment, visualize=visualize) if augment or visualize else self.model(im)
        elif self.jit:  # TorchScript
            y = self.model(im)
        elif self.dnn:  # ONNX OpenCV DNN
            im = im.cpu().numpy()  # torch to numpy
            self.net.setInput(im)
            y = self.net.forward()
        elif self.onnx:  # ONNX Runtime
            im = im.cpu().numpy()  # torch to numpy
            y = self.session.run(self.output_names, {self.session.get_inputs()[0].name: im})
        elif self.xml:  # OpenVINO
            im = im.cpu().numpy()  # FP32
            y = list(self.ov_compiled_model(im).values())
        elif self.engine:  # TensorRT
            if self.dynamic and im.shape != self.bindings['images'].shape:
                i = self.model.get_binding_index('images')
                self.context.set_binding_shape(i, im.shape)  # reshape if dynamic
                self.bindings['images'] = self.bindings['images']._replace(shape=im.shape)
                for name in self.output_names:
                    i = self.model.get_binding_index(name)
                    self.bindings[name].data.resize_(tuple(self.context.get_binding_shape(i)))
            s = self.bindings['images'].shape
            assert im.shape == s, f"input size {im.shape} {'>' if self.dynamic else 'not equal to'} max model size {s}"
            self.binding_addrs['images'] = int(im.data_ptr())
            self.context.execute_v2(list(self.binding_addrs.values()))
            y = [self.bindings[x].data for x in sorted(self.output_names)]
        elif self.coreml:  # CoreML
            im = im[0].cpu().numpy()
            im_pil = Image.fromarray((im * 255).astype('uint8'))
            # im = im.resize((192, 320), Image.BILINEAR)
            y = self.model.predict({'image': im_pil})  # coordinates are xywh normalized
            if 'confidence' in y:
                raise TypeError('Ultralytics only supports inference of non-pipelined CoreML models exported with '
                                f"'nms=False', but 'model={w}' has an NMS pipeline created by an 'nms=True' export.")
                # TODO: CoreML NMS inference handling
                # from ultralytics.utils.ops import xywh2xyxy
                # box = xywh2xyxy(y['coordinates'] * [[w, h, w, h]])  # xyxy pixels
                # conf, cls = y['confidence'].max(1), y['confidence'].argmax(1).astype(np.float32)
                # y = np.concatenate((box, conf.reshape(-1, 1), cls.reshape(-1, 1)), 1)
            elif len(y) == 1:  # classification model
                y = list(y.values())
            elif len(y) == 2:  # segmentation model
                y = list(reversed(y.values()))  # reversed for segmentation models (pred, proto)
        elif self.paddle:  # PaddlePaddle
            im = im.cpu().numpy().astype(np.float32)
            self.input_handle.copy_from_cpu(im)
            self.predictor.run()
            y = [self.predictor.get_output_handle(x).copy_to_cpu() for x in self.output_names]
        elif self.ncnn:  # ncnn
            mat_in = self.pyncnn.Mat(im[0].cpu().numpy())
            ex = self.net.create_extractor()
            input_names, output_names = self.net.input_names(), self.net.output_names()
            ex.input(input_names[0], mat_in)
            y = []
            for output_name in output_names:
                mat_out = self.pyncnn.Mat()
                ex.extract(output_name, mat_out)
                y.append(np.array(mat_out)[None])
        elif self.triton:  # NVIDIA Triton Inference Server
            im = im.cpu().numpy()  # torch to numpy
            y = self.model(im)
        else:  # TensorFlow (SavedModel, GraphDef, Lite, Edge TPU)
            im = im.cpu().numpy()
            if self.saved_model:  # SavedModel
                y = self.model(im, training=False) if self.keras else self.model(im)
                if not isinstance(y, list):
                    y = [y]
            elif self.pb:  # GraphDef
                y = self.frozen_func(x=self.tf.constant(im))
                if len(y) == 2 and len(self.names) == 999:  # segments and names not defined
                    ip, ib = (0, 1) if len(y[0].shape) == 4 else (1, 0)  # index of protos, boxes
                    nc = y[ib].shape[1] - y[ip].shape[3] - 4  # y = (1, 160, 160, 32), (1, 116, 8400)
                    self.names = {i: f'class{i}' for i in range(nc)}
            else:  # Lite or Edge TPU
                details = self.input_details[0]
                integer = details['dtype'] in (np.int8, np.int16)  # is TFLite quantized int8 or int16 model
                if integer:
                    scale, zero_point = details['quantization']
                    im = (im / scale + zero_point).astype(details['dtype'])  # de-scale
                self.interpreter.set_tensor(details['index'], im)
                self.interpreter.invoke()
                y = []
                for output in self.output_details:
                    x = self.interpreter.get_tensor(output['index'])
                    if integer:
                        scale, zero_point = output['quantization']
                        x = (x.astype(np.float32) - zero_point) * scale  # re-scale
                    if x.ndim > 2:  # if task is not classification
                        # Denormalize xywh by image size. See https://github.com/ultralytics/ultralytics/pull/1695
                        # xywh are normalized in TFLite/EdgeTPU to mitigate quantization error of integer models
                        x[:, [0, 2]] *= w
                        x[:, [1, 3]] *= h
                    y.append(x)
            # TF segment fixes: export is reversed vs ONNX export and protos are transposed
            if len(y) == 2:  # segment with (det, proto) output order reversed
                if len(y[1].shape) != 4:
                    y = list(reversed(y))  # should be y = (1, 116, 8400), (1, 160, 160, 32)
                y[1] = np.transpose(y[1], (0, 3, 1, 2))  # should be y = (1, 116, 8400), (1, 32, 160, 160)
            y = [x if isinstance(x, np.ndarray) else x.numpy() for x in y]

        # for x in y:
        #     print(type(x), len(x)) if isinstance(x, (list, tuple)) else print(type(x), x.shape)  # debug shapes
        if isinstance(y, (list, tuple)):
            return self.from_numpy(y[0]) if len(y) == 1 else [self.from_numpy(x) for x in y]
        else:
            return self.from_numpy(y)

在这里插入图片描述

至此就修改完成了,可以配置模型开始训练了


五、yaml模型文件

5.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以 ultralytics/cfg/models/rt-detr/rtdetr-l.yaml 为例,在同目录下创建一个用于自己数据集训练的模型文件 rtdetr-l-PoolFormer.yaml

rtdetr-l.yaml 中的内容复制到 rtdetr-l-PoolFormer.yaml 文件下,修改 nc 数量等于自己数据中目标的数量。

📌 模型的修改方法是将 骨干网络 替换成 poolformer_s12

# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-l object detection model with P3-P5 outputs. For details see https://docs.ultralytics.com/models/rtdetr

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
  # [depth, width, max_channels]
  l: [1.00, 1.00, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, poolformer_s12, []]  # 4

head:
  - [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 5 input_proj.2
  - [-1, 1, AIFI, [1024, 8]] # 6
  - [-1, 1, Conv, [256, 1, 1]]  # 7, Y5, lateral_convs.0

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 8
  - [3, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 9 input_proj.1
  - [[-2, -1], 1, Concat, [1]] # 10
  - [-1, 3, RepC3, [256]]  # 11, fpn_blocks.0
  - [-1, 1, Conv, [256, 1, 1]]   # 12, Y4, lateral_convs.1

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 13
  - [2, 1, Conv, [256, 1, 1, None, 1, 1, False]]  # 14 input_proj.0
  - [[-2, -1], 1, Concat, [1]]  # 15 cat backbone P4
  - [-1, 3, RepC3, [256]]    # X3 (16), fpn_blocks.1

  - [-1, 1, Conv, [256, 3, 2]]   # 17, downsample_convs.0
  - [[-1, 12], 1, Concat, [1]]  # 18 cat Y4
  - [-1, 3, RepC3, [256]]    # F4 (19), pan_blocks.0

  - [-1, 1, Conv, [256, 3, 2]]   # 20, downsample_convs.1
  - [[-1, 7], 1, Concat, [1]]  # 21 cat Y5
  - [-1, 3, RepC3, [256]]    # F5 (22), pan_blocks.1

  - [[16, 19, 22], 1, RTDETRDecoder, [nc]]  # Detect(P3, P4, P5)


六、成功运行结果

分别打印网络模型可以看到 poolformer_s12 已经加入到模型中,并可以进行训练了。

rtdetr-l-PoolFormer

rtdetr-l-PoolFormer summary: 524 layers, 29,986,211 parameters, 29,986,211 gradients, 90.5 GFLOPs

                   from  n    params  module                                       arguments                     
  0                  -1  1  11403200  poolformer_s12                               []                            
  1                  -1  1    131584  ultralytics.nn.modules.conv.Conv             [512, 256, 1, 1, None, 1, 1, False]
  2                  -1  1    789760  ultralytics.nn.modules.transformer.AIFI      [256, 1024, 8]                
  3                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  4                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
  5                   3  1     82432  ultralytics.nn.modules.conv.Conv             [320, 256, 1, 1, None, 1, 1, False]
  6            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
  7                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
  8                  -1  1     66048  ultralytics.nn.modules.conv.Conv             [256, 256, 1, 1]              
  9                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']          
 10                   2  1     33280  ultralytics.nn.modules.conv.Conv             [128, 256, 1, 1, None, 1, 1, False]
 11            [-2, -1]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 12                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 13                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 14            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 15                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 16                  -1  1    590336  ultralytics.nn.modules.conv.Conv             [256, 256, 3, 2]              
 17             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]                           
 18                  -1  3   2232320  ultralytics.nn.modules.block.RepC3           [512, 256, 3]                 
 19        [16, 19, 22]  1   7303907  ultralytics.nn.modules.head.RTDETRDecoder    [1, [256, 256, 256]]          
rtdetr-l-PoolFormer summary: 524 layers, 29,986,211 parameters, 29,986,211 gradients, 90.5 GFLOPs