一、本文介绍
本文给大家带来利用RT-DETR模型主干 HGNet 去替换YOLOv11的主干,RT-DETR是最新今年由百度推出的第一款实时的 ViT 模型,其在实时检测的领域上号称是打败了YOLO系列,其利用两个主干一个是HGNet一个是ResNet,其中HGNet就是我们今天来讲解的网络结构模型,这个网络结构目前还没有推出论文,所以其理论知识在网络上也是非常的少,我也是根据网络结构图进行了分析 (精度mAP提高0.05) 。
二、HGNetV2原理讲解
本文论文地址: RT-DETR论文地址
本文代码来源: HGNetV2的代码来源
PP-HGNet 骨干网络的整体结构如下:
其中,PP-HGNet是由多个HG-Block组成, HG-Block的细节如下:
上面的图表是PP-HGNet 神经网络 架构的概览,下面我会对其中的每一个模块进行分析:
1. Stem层: 这是网络的初始预处理层,通常包含卷积层,开始从原始输入数据中提取特征。
2. HG(层次图)块: 这些块是网络的核心 组件 ,设计用于以层次化的方式处理数据。每个HG块可能处理数据的不同抽象层次,允许网络从低级和高级特征中学习。
3. LDS(可学习的下采样)层: 位于HG块之间的这些层可能执行下采样操作,减少特征图的空间维度,减少计算负载并可能增加后续层的感受野。
4. GAP(全局平均池化): 在最终分类之前,使用GAP层将特征图的空间维度减少到每个特征图一个向量,有助于提高网络对输入数据空间变换的鲁棒性。
5. 最终的卷积和全连接(FC)层: 网络以一系列执行最终分类任务的层结束。这通常涉及一个卷积层(有时称为1x1卷积)来组合特征,然后是将这些特征映射到所需输出类别数量的全连接层。
这种架构的主要思想是利用层次化的方法来提取特征,其中复杂的模式可以在不同的规模和抽象层次上学习,提高网络处理复杂图像数据的能力。
这种分层和高效的处理对于图像分类等复杂任务非常有利,在这些任务中,精确预测至关重要的是在不同规模上识别复杂的模式和特征。图表还显示了HG块的扩展视图,包括多个不同滤波器大小的卷积层,以捕获多样化的特征,然后通过一个元素级相加或连接的操作(由+符号表示)在数据传递到下一层之前。
三、HGNetV2的代码
需要注意的是HGNetV2这个版本的所需组件已经集成在 YOLOv8 的仓库了,所以我们无需做任何的代码层面的改动,只需要设计yaml文件来配合Neck部分融合特征即可了,但是我还是把代码放在这里,供有兴趣的读者看一下,也和上面的结构进行一个对照。主要的三个结构HGStem,HGBlock,DWConv。
- class HGStem(nn.Module):
- """
- StemBlock of PPHGNetV2 with 5 convolutions and one maxpool2d.
- https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
- """
- def __init__(self, c1, cm, c2):
- """Initialize the SPP layer with input/output channels and specified kernel sizes for max pooling."""
- super().__init__()
- self.stem1 = Conv(c1, cm, 3, 2)
- self.stem2a = Conv(cm, cm // 2, 2, 1, 0)
- self.stem2b = Conv(cm // 2, cm, 2, 1, 0)
- self.stem3 = Conv(cm * 2, cm, 3, 2)
- self.stem4 = Conv(cm, c2, 1, 1)
- self.pool = nn.MaxPool2d(kernel_size=2, stride=1, padding=0, ceil_mode=True)
- def forward(self, x):
- """Forward pass of a PPHGNetV2 backbone layer."""
- x = self.stem1(x)
- x = F.pad(x, [0, 1, 0, 1])
- x2 = self.stem2a(x)
- x2 = F.pad(x2, [0, 1, 0, 1])
- x2 = self.stem2b(x2)
- x1 = self.pool(x)
- x = torch.cat([x1, x2], dim=1)
- x = self.stem3(x)
- x = self.stem4(x)
- return x
- class HGBlock(nn.Module):
- """
- HG_Block of PPHGNetV2 with 2 convolutions and LightConv.
- https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/modeling/backbones/hgnet_v2.py
- """
- def __init__(self, c1, cm, c2, k=3, n=6, lightconv=False, shortcut=False, act=True):
- """Initializes a CSP Bottleneck with 1 convolution using specified input and output channels."""
- super().__init__()
- block = LightConv if lightconv else Conv
- self.m = nn.ModuleList(block(c1 if i == 0 else cm, cm, k=k, act=act) for i in range(n))
- self.sc = Conv(c1 + n * cm, c2 // 2, 1, 1, act=act) # squeeze conv
- self.ec = Conv(c2 // 2, c2, 1, 1, act=act) # excitation conv
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """Forward pass of a PPHGNetV2 backbone layer."""
- y = [x]
- y.extend(m(y[-1]) for m in self.m)
- y = self.ec(self.sc(torch.cat(y, 1)))
- return y + x if self.add else y
- def autopad(k, p=None, d=1): # kernel, padding, dilation
- """Pad to 'same' shape outputs."""
- if d > 1:
- k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
- class Conv(nn.Module):
- """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
- default_act = nn.SiLU() # default activation
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
- """Initialize Conv layer with given arguments including activation."""
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
- def forward(self, x):
- """Apply convolution, batch normalization and activation to input tensor."""
- return self.act(self.bn(self.conv(x)))
- def forward_fuse(self, x):
- """Perform transposed convolution of 2D data."""
- return self.act(self.conv(x))
- class DWConv(Conv):
- """Depth-wise convolution."""
- def __init__(self, c1, c2, k=1, s=1, d=1, act=True): # ch_in, ch_out, kernel, stride, dilation, activation
- """Initialize Depth-wise convolution with given parameters."""
- super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), d=d, act=act)
四、手把手教你添加HGNetV2
本文以及默认大家用的是以及集成过RT-DETR代码的 ultralytics 仓库了(其中以及包含了HGNet的代码文件),所以我们只需要添加几行代码就能够回复官方删除掉的功能。
我们首先需要找到'ultralytics/nn/tasks.py'文件然后找到'def parse_model(d, ch, verbose=True): # model_dict, input_channels(3)'
下面的代码我们看到大概基本的样子是这样其中的Light_HGBlock大家是没有的,我们按照下面第二张图片进行修改。
复制此处的代码按照下面的图片进行添加即可,不要自己打!
- cm = make_divisible(min(cm, max_channels) * width, 8)
- c2 = make_divisible(min(c2, max_channels) * width, 8)
- n = n_ = max(round(n * depth), 1) if n > 1 else n # depth gain
到此我们就完成了官方的代码修复,我们此时运行代码比如V8n那么你就会发现的大幅度的减少了参数量,
4. 1 HGNetV2-l的yaml文件(此为对比试验版本)
此版本的信息为:YOLO11-HGNetV2-l summary: 365 layers, 2,093,931 parameters, 2,093,915 gradients, 5.6 GFLOPs
# 需要注意模型轻量化了往往代表学习能力变弱相同的数据集需要训练的轮次(拟合)的次数需要变多.
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
- s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
- m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
- l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
- x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
- # YOLO11n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, HGStem, [32, 48]] # 0-P2/4
- - [-1, 6, HGBlock, [48, 128, 3]] # stage 1
- - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- - [-1, 6, HGBlock, [96, 512, 3]] # stage 2
- - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 4-P3/16
- - [-1, 6, HGBlock, [192, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- - [-1, 6, HGBlock, [192, 1024, 5, True, True]]
- - [-1, 6, HGBlock, [192, 1024, 5, True, True]] # stage 3
- - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 8-P4/32
- - [-1, 6, HGBlock, [384, 2048, 5, True, False]] # stage 4
- - [-1, 1, SPPF, [1024, 5]] # 10
- - [-1, 1, PSA, [1024]] # 11
- # YOLO11n head
- head:
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 7], 1, Concat, [1]] # cat backbone P4
- - [-1, 2, C3k2, [512, False]] # 14
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 3], 1, Concat, [1]] # cat backbone P3
- - [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 14], 1, Concat, [1]] # cat head P4
- - [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 11], 1, Concat, [1]] # cat head P5
- - [-1, 2, C3k2, [1024, True]] # 23 (P5/32-large)
- - [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
4.2 HGNetV2-x的yaml文件
此版本的信息为:YOLO11-HGNetV2-X summary: 386 layers, 2,424,971 parameters, 2,424,955 gradients, 6.7 GFLOPs
# 需要注意模型轻量化了往往代表学习能力变弱相同的数据集需要训练的轮次(拟合)的次数需要变多.
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.33, 0.25, 1024]
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, HGStem, [32, 64]] # 0-P2/4
- - [-1, 6, HGBlock, [64, 128, 3]] # stage 1
- - [-1, 1, DWConv, [128, 3, 2, 1, False]] # 2-P3/8
- - [-1, 6, HGBlock, [128, 512, 3]]
- - [-1, 6, HGBlock, [128, 512, 3, False, True]] # 4-stage 2
- - [-1, 1, DWConv, [512, 3, 2, 1, False]] # 5-P3/16
- - [-1, 6, HGBlock, [256, 1024, 5, True, False]] # cm, c2, k, light, shortcut
- - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
- - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
- - [-1, 6, HGBlock, [256, 1024, 5, True, True]]
- - [-1, 6, HGBlock, [256, 1024, 5, True, True]] # 10-stage 3
- - [-1, 1, DWConv, [1024, 3, 2, 1, False]] # 11-P4/32
- - [-1, 6, HGBlock, [512, 2048, 5, True, False]]
- - [-1, 6, HGBlock, [512, 2048, 5, True, True]] # 13-stage 4
- - [-1, 1, SPPF, [1024, 5]] # 14
- - [-1, 1, PSA, [1024]] # 15
- # YOLO11n head
- head:
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 10], 1, Concat, [1]] # cat backbone P4
- - [-1, 2, C3k2, [512, False]] # 18
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 2, C3k2, [256, False]] # 21 (P3/8-small)
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 18], 1, Concat, [1]] # cat head P4
- - [-1, 2, C3k2, [512, False]] # 24 (P4/16-medium)
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 15], 1, Concat, [1]] # cat head P5
- - [-1, 2, C3k2, [1024, True]] # 27 (P5/32-large)
- - [[21, 24, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)
五、运行成功记录
5.1 运行记录
5.2 训练代码
- import warnings
- warnings.filterwarnings('ignore')
- from ultralytics import YOLO
- if __name__ == '__main__':
- model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')
- # model.load('yolov8n.pt') # loading pretrain weights
- model.train(data=r'替换数据集yaml文件地址',
- # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
- cache=False,
- imgsz=640,
- epochs=150,
- single_cls=False, # 是否是单类别检测
- batch=4,
- close_mosaic=10,
- workers=0,
- device='0',
- optimizer='SGD', # using SGD
- # resume='', # 如过想续训就设置last.pt的地址
- amp=False, # 如果出现训练损失为Nan可以关闭amp
- project='runs/train',
- name='exp',
- )
六、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~