一、本文介绍
本文给大家带来的改进内容是 SCConv ,即空间和通道重构卷积,是一种发布于2023.9月份的一个新的改进机制。它的核心创新在于能够同时处理图像的空间 (形状、结构) 和通道 ( 色彩、深度) 信息,这样的处理方式使得SCConv在分析图像时更加精细和高效。这种技术不仅适用于复杂场景的 图像处理 ,还能在普通的对象检测任务中提供更高的精确度 (亲测在小目标检测和正常的物体检测中都有效提点) 。SCConv的这种能力,特别是在处理大量数据和复杂图像时的优势。本文通过先介绍SCConv的基本网络结构和原理当大家对该卷积有一个大概的了解,然后教大家如何将该卷积添加到自己的网络结构中 。
适用检测目标: 所有的目标检测均有一定的提点
二、网络结构讲解
论文地址: 官方论文地址
代码地址: 官方代码地址
2.1 SCConv的主要思想
SCConv(空间和通道重构卷积 ) 的高效卷积模块,以减少 卷积神经网络 (CNN)中的空间和通道冗余。SCConv旨在通过优化特征提取过程,减少计算资源消耗并提高网络性能。该模块包括两个单元:
1.空间重构单元(SRU): SRU通过分离和重构方法来减少空间冗余。
2.通道重构单元(CRU): CRU采用分割-变换-融合策略来减少通道冗余。
下面是SCConv的结构示意图->
下面我将分别解释这两个单元->
2.2 空间重构单元(SRU)
空间重构单元(SRU) 是SCConv模块的一部分,负责减少特征在空间维度上的冗余。SRU接收输入特征,并通过以下步骤处理:
1. 组归一化(Group Normalization):
首先对输入特征进行归一化,以减少不同特征图之间的尺度差异。
2. 权重生成:
通过应用归一化和激活
函数
,如Sigmoid,从归一化的特征图中生成权重。
3. 特征分离:
根据生成的权重,对输入特征进行分离,形成多个子特征集。
4. 特征重构:
最后,这些分离出来的特征集经过变换和重组,产生空间精炼的特征输出,以便进一步处理。
上图展示了空间重构单元(SRU)的架构。SRU的工作流程如下:
1. 输入特征X:首先进行组归一化(GN)处理。
2. 分离:通过一系列的权重
,
, ...,
对特征进行加权,这些权重是通过输入特征的通道
经过归一化和非线性激活函数(如Sigmoid)计算得到的。
3. 重构:加权后的特征被分割成两个部分
和
,然后这两部分各自经过变换,最终通过加法和拼接操作重构,得到空间精炼特征
。
总结: 这个单元的设计目的是为了减少输入特征的空间冗余,从而提高卷积 神经网络 处理特征的效率。
2.3 通道重构单元(CRU)
通道重构单元(CRU) 是SCConv模块的一部分,旨在减少卷积神经网络特征的通道冗余。CRU对经过空间重构单元(SRU)处理后的特征进一步操作,通过以下步骤减少通道冗余:
上图详细展示了通道重构单元(CRU)的架构,该单元从空间精炼特征 \( X^W \) 开始进行处理。CRU的工作流程包括以下几个步骤:
1. 分割(
Split
):特征
被分割成两部分,通过不同比例的
和
路径进行不同的1x1卷积处理。
2. 变换(Transform):通过全局卷积(GWC)和点卷积(PWC)进一步变换这两部分特征。
3. 融合(Fuse):两个变换后的特征
和
经过池化和SoftMax加权融合,形成最终的通道精炼特征
。
总结: 这种结构旨在通过细致地处理各个通道,减少不必要的信息,并提高网络的整体性能和效率。通过这一过程,CRU有效地提高了特征的表征效率,同时减少了 模型 的参数数量和计算成本。
三、SCConv代码
核心代码的使用方式看章节四!
- import torch
- import torch.nn.functional as F
- import torch.nn as nn
- __all__ = ['ScConv', 'C3k2_ScConv']
- class GroupBatchnorm2d(nn.Module):
- def __init__(self, c_num: int,
- group_num: int = 16,
- eps: float = 1e-10
- ):
- super(GroupBatchnorm2d, self).__init__()
- assert c_num >= group_num
- self.group_num = group_num
- self.weight = nn.Parameter(torch.randn(c_num, 1, 1))
- self.bias = nn.Parameter(torch.zeros(c_num, 1, 1))
- self.eps = eps
- def forward(self, x):
- N, C, H, W = x.size()
- x = x.view(N, self.group_num, -1)
- mean = x.mean(dim=2, keepdim=True)
- std = x.std(dim=2, keepdim=True)
- x = (x - mean) / (std + self.eps)
- x = x.view(N, C, H, W)
- return x * self.weight + self.bias
- class SRU(nn.Module):
- def __init__(self,
- oup_channels: int,
- group_num: int = 16,
- gate_treshold: float = 0.5,
- torch_gn: bool = True
- ):
- super().__init__()
- self.gn = nn.GroupNorm(num_channels=oup_channels, num_groups=group_num) if torch_gn else GroupBatchnorm2d(
- c_num=oup_channels, group_num=group_num)
- self.gate_treshold = gate_treshold
- self.sigomid = nn.Sigmoid()
- def forward(self, x):
- gn_x = self.gn(x)
- w_gamma = self.gn.weight / sum(self.gn.weight)
- w_gamma = w_gamma.view(1, -1, 1, 1)
- reweigts = self.sigomid(gn_x * w_gamma)
- # Gate
- w1 = torch.where(reweigts > self.gate_treshold, torch.ones_like(reweigts), reweigts) # 大于门限值的设为1,否则保留原值
- w2 = torch.where(reweigts > self.gate_treshold, torch.zeros_like(reweigts), reweigts) # 大于门限值的设为0,否则保留原值
- x_1 = w1 * x
- x_2 = w2 * x
- y = self.reconstruct(x_1, x_2)
- return y
- def reconstruct(self, x_1, x_2):
- x_11, x_12 = torch.split(x_1, x_1.size(1) // 2, dim=1)
- x_21, x_22 = torch.split(x_2, x_2.size(1) // 2, dim=1)
- return torch.cat([x_11 + x_22, x_12 + x_21], dim=1)
- class CRU(nn.Module):
- '''
- alpha: 0<alpha<1
- '''
- def __init__(self,
- op_channel: int,
- alpha: float = 1 / 2,
- squeeze_radio: int = 2,
- group_size: int = 2,
- group_kernel_size: int = 3,
- ):
- super().__init__()
- self.up_channel = up_channel = int(alpha * op_channel)
- self.low_channel = low_channel = op_channel - up_channel
- self.squeeze1 = nn.Conv2d(up_channel, up_channel // squeeze_radio, kernel_size=1, bias=False)
- self.squeeze2 = nn.Conv2d(low_channel, low_channel // squeeze_radio, kernel_size=1, bias=False)
- # up
- self.GWC = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=group_kernel_size, stride=1,
- padding=group_kernel_size // 2, groups=group_size)
- self.PWC1 = nn.Conv2d(up_channel // squeeze_radio, op_channel, kernel_size=1, bias=False)
- # low
- self.PWC2 = nn.Conv2d(low_channel // squeeze_radio, op_channel - low_channel // squeeze_radio, kernel_size=1,
- bias=False)
- self.advavg = nn.AdaptiveAvgPool2d(1)
- def forward(self, x):
- # Split
- up, low = torch.split(x, [self.up_channel, self.low_channel], dim=1)
- up, low = self.squeeze1(up), self.squeeze2(low)
- # Transform
- Y1 = self.GWC(up) + self.PWC1(up)
- Y2 = torch.cat([self.PWC2(low), low], dim=1)
- # Fuse
- out = torch.cat([Y1, Y2], dim=1)
- out = F.softmax(self.advavg(out), dim=1) * out
- out1, out2 = torch.split(out, out.size(1) // 2, dim=1)
- return out1 + out2
- def autopad(k, p=None, d=1): # kernel, padding, dilation
- """Pad to 'same' shape outputs."""
- if d > 1:
- k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
- class Conv(nn.Module):
- """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
- default_act = nn.SiLU() # default activation
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
- """Initialize Conv layer with given arguments including activation."""
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
- def forward(self, x):
- """Apply convolution, batch normalization and activation to input tensor."""
- return self.act(self.bn(self.conv(x)))
- def forward_fuse(self, x):
- """Perform transposed convolution of 2D data."""
- return self.act(self.conv(x))
- class ScConv(nn.Module):
- def __init__(self,
- op_channel: int,
- group_num: int = 4,
- gate_treshold: float = 0.5,
- alpha: float = 1 / 2,
- squeeze_radio: int = 2,
- group_size: int = 2,
- group_kernel_size: int = 3,
- ):
- super().__init__()
- self.SRU = SRU(op_channel,
- group_num=group_num,
- gate_treshold=gate_treshold)
- self.CRU = CRU(op_channel,
- alpha=alpha,
- squeeze_radio=squeeze_radio,
- group_size=group_size,
- group_kernel_size=group_kernel_size)
- def forward(self, x):
- x = self.SRU(x)
- x = self.CRU(x)
- return x
- class Bottleneck(nn.Module):
- """Standard bottleneck."""
- def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
- """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, k[0], 1)
- self.cv2 = Conv(c_, c2, k[1], 1, g=g)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """Applies the YOLO FPN to input data."""
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class Bottleneck_ScConv(nn.Module):
- """Standard bottleneck."""
- def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
- """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
- expansion.
- """
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, k[0], 1)
- self.cv2 = ScConv(c_)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """'forward()' applies the YOLO FPN to input data."""
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class C2f(nn.Module):
- """Faster Implementation of CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
- """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
- super().__init__()
- self.c = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, 2 * self.c, 1, 1)
- self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
- self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
- def forward(self, x):
- """Forward pass through C2f layer."""
- y = list(self.cv1(x).chunk(2, 1))
- y.extend(m(y[-1]) for m in self.m)
- return self.cv2(torch.cat(y, 1))
- def forward_split(self, x):
- """Forward pass using split() instead of chunk()."""
- y = list(self.cv1(x).split((self.c, self.c), 1))
- y.extend(m(y[-1]) for m in self.m)
- return self.cv2(torch.cat(y, 1))
- class C3(nn.Module):
- """CSP Bottleneck with 3 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
- def forward(self, x):
- """Forward pass through the CSP bottleneck with 2 convolutions."""
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
- class C3k(C3):
- """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
- """Initializes the C3k module with specified channels, number of layers, and configurations."""
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
- self.m = nn.Sequential(*(Bottleneck_ScConv(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
- class C3k2_ScConv(C2f):
- """Faster Implementation of CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
- """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
- super().__init__(c1, c2, n, shortcut, g, e)
- self.m = nn.ModuleList(
- C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
- ) # 用ScConv提取特征, 特征融合时换回普通的Bottlenck
- if __name__ == "__main__":
- # Generating Sample image
- image_size = (1, 64, 240, 240)
- image = torch.rand(*image_size)
- # Model
- mobilenet_v1 = C3k2_ScConv(64, 64)
- out = mobilenet_v1(image)
- print(out.size())
四、手把手教你添加本文机制!
4.1 修改一
第一还是建立文件,我们找到如下 ultralytics /nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹 (用群内的文件的话已经有了无需新建) !然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。
4.2 修改二
第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。
4.3 修改三
第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可) !
从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!
4.4 修改四
按照我的添加在parse_model里添加即可。
到此就修改完成了,大家可以复制下面的yaml文件运行。
五、 模型训练 和配置
5.1 模型yaml文件
模型的训练信息:YOLO11-C3k2-ScConv summary: 368 layers, 2,462,555 parameters, 2,462,539 gradients, 6.3 GFLOPs
# 用ScConv提取特征, 特征融合时换回普通的Bottlenck
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
- s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
- m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
- l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
- x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
- # YOLO11n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 2, C3k2_ScConv, [256, False, 0.25]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 2, C3k2_ScConv, [512, False, 0.25]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 2, C3k2_ScConv, [512, True]]
- - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- - [-1, 2, C3k2_ScConv, [1024, True]]
- - [-1, 1, SPPF, [1024, 5]] # 9
- - [-1, 2, C2PSA, [1024]] # 10
- # YOLO11n head
- head:
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 2, C3k2_ScConv, [512, False]] # 13
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 2, C3k2_ScConv, [256, False]] # 16 (P3/8-small)
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 13], 1, Concat, [1]] # cat head P4
- - [-1, 2, C3k2_ScConv, [512, False]] # 19 (P4/16-medium)
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 10], 1, Concat, [1]] # cat head P5
- - [-1, 2, C3k2_ScConv, [1024, True]] # 22 (P5/32-large)
- - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
5.2 训练截图
5.3 训练代码
- import warnings
- warnings.filterwarnings('ignore')
- from ultralytics import YOLO
- if __name__ == '__main__':
- model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')
- # model.load('yolov8n.pt') # loading pretrain weights
- model.train(data=r'替换数据集yaml文件地址',
- # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
- cache=False,
- imgsz=640,
- epochs=150,
- single_cls=False, # 是否是单类别检测
- batch=4,
- close_mosaic=10,
- workers=0,
- device='0',
- optimizer='SGD', # using SGD
- # resume='', # 如过想续训就设置last.pt的地址
- amp=False, # 如果出现训练损失为Nan可以关闭amp
- project='runs/train',
- name='exp',
- )
六、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充, 目前本专栏免费阅读(暂时,大家尽早关注不迷路~) ,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~