一、本文介绍
这篇文章介绍了YOLOv11的重大改进,特别是在 损失函数 方面的创新。它不仅包括了多种IoU损失函数的改进和变体,如 SIoU 、WIoU、GIoU、DIoU、EIOU、CIoU,还融合了“Focus”思想,创造了一系列新的损失函数。这些组合形式的损失函数超过了二十余种,每种都针对特定的 目标检测 挑战进行优化。 文章会详细探讨这些损失函数如何提高YOLOv11在各种检测任务中的性能,包括提升精度、加快收敛速度和增强模型对复杂场景的适应性。 本文章主要是为了发最近新出的Inner思想改进的各种EIoU的文章服务,其中我经过实验在绝大多数下的效果都要比本文中提到的各种损失效果要好。
目录
三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块
四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中
二、各种损失函数的基本原理
2.1 交集面积和并集面积
在理解各种损失函数之前我们需要先来理解一下交集面积和并集面积,在数学中我们都学习过集合的概念, 这里的交集和并集的概念和数学集合中的含义是一样的。
2.2 IoU
论文地址: IoU Loss for 2D/3D Object Detectio
适用场景: 普通的IoU并没有特定的适用场景
概念: 测量预测边界框和真实边界框之间的重叠度(最基本的边界框损失函数,后面的都是居于其进行计算)。
2.3 SIoU
论文地址: SIoU: More Powerful Learning for Bounding Box Regression
适用场景: 适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。
概念: SIoU损失通过融入角度考虑和规模敏感性,引入了一种更为复杂的边界框回归方法,解决了以往损失函数的局限性,SIoU损失函数包含四个组成部分:角度损失、距离损失、形状损失和第四个未指定的组成部分。通过整合这些方面,从而实现更好的训练速度和预测准确性。
2.4 WioU
论文地址 : WIoU: Bounding Box Regression Loss with Dynamic Focusing Mechanism
适用场景: 适用于需要动态调整损失焦点的情况,如不均匀分布的目标或不同尺度的目标检测。
概念: 引入动态聚焦机制的IoU变体,旨在改善边界框回归损失。
2.5 GIoU
论文地址: GIoU: A Metric and A Loss for Bounding Box Regression
适用场景: 适合处理有重叠和非重叠区域的复杂场景,如拥挤场景的目标检测。
概念: 在IoU的基础上考虑非重叠区域,以更全面评估边界框
2.6 DIoU
论文地址: DIoU: Faster and Better Learning for Bounding Box Regression
适用场景: 适用于需要快速收敛和精确定位的任务,特别是在边界框定位精度至关重要的场景。
概念: 结合边界框中心点之间的距离和重叠区域。
2.7 EIoU
论文地址 : EIoU:Loss for Accurate Bounding Box Regression
适用场景: 可用于需要进一步优化边界框对齐和形状相似性的高级场景。
概念: EIoU损失函数的核心思想在于提高边界框回归的准确性和效率。它通过以下几个方面来优化目标检测:
1. 增加中心点距离损失:通过最小化预测框和真实框中心点之间的距离,提高边界框的定位准确性。
2. 考虑尺寸差异:通过惩罚宽度和高度的差异,EIoU确保预测框在形状上更接近真实框。
3. 结合最小封闭框尺寸:将损失函数与包含预测框和真实框的最小封闭框的尺寸相结合,从而使得损失更加敏感于对象的尺寸和位置。
EIoU损失函数在传统IoU基础上增加了这些考量,以期在各种尺度上都能获得更精确的目标定位,尤其是在物体大小和形状变化较大的场景中。
2.8 CIoU
论文地址: CIoU:Enhancing Geometric Factors in Model Learning
适用场景: 适合需要综合考虑重叠区域、形状和中心点位置的场景,如复杂背景或多目标跟踪。
概念: 综合考虑重叠区域、中心点距离和长宽比。
2.9 FocusLoss
论文地址 : Focal Loss for Dense Object Detection
适用场景: 适用于需要高精度边界框对齐的场景,如精细的物体检测和小目标检测。
Focal Loss 由Kaiming He等人在论文《Focal Loss for Dense Object Detection》中提出,旨在解决在训练过程中正负样本数量极度不平衡的问题,尤其是在一些目标检测任务中,背景类别的样本可能远远多于前景类别的样本。
Focal Loss通过修改交叉熵损失, 增加一个调整因子 , 这个因子降低了那些已经被正确分类的样本的损失值 ,使得 模型 的训练焦点更多地放在难以分类的样本上。这种方式特别有利于提升小目标或者在复杂背景中容易被忽视的目标的检测 性能 。简而言之,Focal Loss让模型“关注”(或“专注”)于学习那些对提高整体性能更为关键的样本。
三、EIoU、SIoU、EIoU、FocusIoU等损失函数代码块
3.1 代码一
此代码块块的基础版本来源于Github的开源版本,我在其基础上将Inner的思想加入其中形成了各种Inner的思想同时融合各种改良版本的损失函数形成对应版本的InnerIoU、InnerCIoU等损失函数。
- import numpy as np
- import torch, math
- class WIoU_Scale:
- ''' monotonous: {
- None: origin v1
- True: monotonic FM v2
- False: non-monotonic FM v3
- }
- momentum: The momentum of running mean'''
- iou_mean = 1.
- monotonous = False
- _momentum = 1 - 0.5 ** (1 / 7000)
- _is_train = True
- def __init__(self, iou):
- self.iou = iou
- self._update(self)
- @classmethod
- def _update(cls, self):
- if cls._is_train: cls.iou_mean = (1 - cls._momentum) * cls.iou_mean + \
- cls._momentum * self.iou.detach().mean().item()
- @classmethod
- def _scaled_loss(cls, self, gamma=1.9, delta=3):
- if isinstance(self.monotonous, bool):
- if self.monotonous:
- return (self.iou.detach() / self.iou_mean).sqrt()
- else:
- beta = self.iou.detach() / self.iou_mean
- alpha = delta * torch.pow(gamma, beta - delta)
- return beta / alpha
- return 1
- def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, SIoU=False, EIoU=False, WIoU=False, Focal=False,
- alpha=1, gamma=0.5, scale=False, eps=1e-7):
- # Returns the IoU of box1 to box2. box1 is 4, box2 is nx4
- if xywh: # transform from xywh to xyxy
- (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
- w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
- b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
- b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
- else: # x1, y1, x2, y2 = box1
- b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
- b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
- w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
- w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps
- # Intersection area
- inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp_(0) * (
- b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)
- ).clamp_(0)
- # Union Area
- union = w1 * h1 + w2 * h2 - inter + eps
- # IoU
- iou = inter / union
- if scale:
- self = WIoU_Scale(1 - (inter / union))
- # IoU
- # iou = inter / union # ori iou
- # iou = torch.pow(inter / (union + eps), alpha) # alpha iou
- if CIoU or DIoU or GIoU or EIoU or SIoU or WIoU:
- cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1) # convex (smallest enclosing box) width
- ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1) # convex height
- if CIoU or DIoU or EIoU or SIoU or WIoU: # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
- c2 = cw.pow(2) + ch.pow(2) + eps # convex diagonal squared
- rho2 = (
- (b2_x1 + b2_x2 - b1_x1 - b1_x2).pow(2) + (b2_y1 + b2_y2 - b1_y1 - b1_y2).pow(2)
- ) / 4 # center dist**2
- if CIoU: # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
- v = (4 / math.pi ** 2) * ((w2 / h2).atan() - (w1 / h1).atan()).pow(2)
- with torch.no_grad():
- alpha = v / (v - iou + (1 + eps))
- if Focal:
- return iou - (rho2 / c2 + torch.pow(v * alpha + eps, alpha)), torch.pow(inter / (union + eps),
- gamma) # Focal_CIoU
- else:
- return iou - (rho2 / c2 + v * alpha) # CIoU
- elif EIoU:
- rho_w2 = ((b2_x2 - b2_x1) - (b1_x2 - b1_x1)) ** 2
- rho_h2 = ((b2_y2 - b2_y1) - (b1_y2 - b1_y1)) ** 2
- cw2 = torch.pow(cw ** 2 + eps, alpha)
- ch2 = torch.pow(ch ** 2 + eps, alpha)
- if Focal:
- return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2), torch.pow(inter / (union + eps),
- gamma) # Focal_EIou
- else:
- return iou - (rho2 / c2 + rho_w2 / cw2 + rho_h2 / ch2) # EIou
- elif SIoU:
- # SIoU Loss https://arxiv.org/pdf/2205.12740.pdf
- s_cw = (b2_x1 + b2_x2 - b1_x1 - b1_x2) * 0.5 + eps
- s_ch = (b2_y1 + b2_y2 - b1_y1 - b1_y2) * 0.5 + eps
- sigma = torch.pow(s_cw ** 2 + s_ch ** 2, 0.5)
- sin_alpha_1 = torch.abs(s_cw) / sigma
- sin_alpha_2 = torch.abs(s_ch) / sigma
- threshold = pow(2, 0.5) / 2
- sin_alpha = torch.where(sin_alpha_1 > threshold, sin_alpha_2, sin_alpha_1)
- angle_cost = torch.cos(torch.arcsin(sin_alpha) * 2 - math.pi / 2)
- rho_x = (s_cw / cw) ** 2
- rho_y = (s_ch / ch) ** 2
- gamma = angle_cost - 2
- distance_cost = 2 - torch.exp(gamma * rho_x) - torch.exp(gamma * rho_y)
- omiga_w = torch.abs(w1 - w2) / torch.max(w1, w2)
- omiga_h = torch.abs(h1 - h2) / torch.max(h1, h2)
- shape_cost = torch.pow(1 - torch.exp(-1 * omiga_w), 4) + torch.pow(1 - torch.exp(-1 * omiga_h), 4)
- if Focal:
- return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha), torch.pow(
- inter / (union + eps), gamma) # Focal_SIou
- else:
- return iou - torch.pow(0.5 * (distance_cost + shape_cost) + eps, alpha) # SIou
- elif WIoU:
- if Focal:
- raise RuntimeError("WIoU do not support Focal.")
- elif scale:
- return getattr(WIoU_Scale, '_scaled_loss')(self), (1 - iou) * torch.exp(
- (rho2 / c2)), iou # WIoU https://arxiv.org/abs/2301.10051
- else:
- return iou, torch.exp((rho2 / c2)) # WIoU v1
- if Focal:
- return iou - rho2 / c2, torch.pow(inter / (union + eps), gamma) # Focal_DIoU
- else:
- return iou - rho2 / c2 # DIoU
- c_area = cw * ch + eps # convex area
- if Focal:
- return iou - torch.pow((c_area - union) / c_area + eps, alpha), torch.pow(inter / (union + eps),
- gamma) # Focal_GIoU https://arxiv.org/pdf/1902.09630.pdf
- else:
- return iou - torch.pow((c_area - union) / c_area + eps, alpha) # GIoU https://arxiv.org/pdf/1902.09630.pdf
- if Focal:
- return iou, torch.pow(inter / (union + eps), gamma) # Focal_IoU
- else:
- return iou # IoU
3.2 代码二
代码块二此处是使用Focus时候需要修改的代码,如果不适用则不需要修改下面的代码,因为利用Focus机制时候返回的类型是元组所以需要额外的处理。
- if type(iou) is tuple:
- if len(iou) == 2:
- # increased the weight of low/high IoU
- loss_iou = ((1 - iou[1].detach().squeeze()) * (1 - iou[0].squeeze()) * weight).sum() / target_scores_sum # Focal
- # lbox += (iou[1].detach().squeeze() * (1 - iou[0].squeeze())* weight).sum() / target_scores_sum # Focal-inv
- # 这里有两种方法,大家可以自行尝试,这里的Focal-inv也是文章中提出的.
- else:
- loss_iou = (iou[0] * iou[1] * weight).sum() / target_scores_sum
- else:
- loss_iou = ((1.0 - iou) * weight).sum() / target_scores_sum # iou loss
四、添加EIoU、SIoU、EIoU、FocusIoU等损失函数到模型中
4.1 修改一
第一步我们需要找到如下的文件 ultralytics /utils/metrics.py,找到如下的代码,下面的图片是原先的代码部分截图的正常样子,然后我们将整个代码块一将下面的 整个方法(这里这是部分截图) 内容全部替换
4.2 修改二
第二步我们找到另一个文件如下->"ultralytics/utils/loss.py",我们找到如下的代码块,将代码块二替换其中的第74行,
同时在上面的第73行(我说的我图片这里的不一定代表你那里,替换成如下的形式),按照下面代码设置即可!
- # 想用那个对应的设置为True即可,比如我想用EIoU,那么我只需要把EIoU设置为True,那么此时就是EIoU!
- xywh=False, GIoU=False, DIoU=False, CIoU=True, EIoU=False, SIoU=False, WIoU=False, Focal=False, ratio=0.75)
4.3 步骤三
我们还需要修改一处,找到如下的文件''ultralytics/utils/tal.py''然后找到其中下面图片的代码,用我给的代码替换红框内的代码。
- def iou_calculation(self, gt_bboxes, pd_bboxes):
- """IoU calculation for horizontal bounding boxes."""
- return bbox_iou(gt_bboxes, pd_bboxes, xywh=False, GIoU=False, DIoU=False, CIoU=True,
- EIoU=False, SIoU=False, WIoU=False, ShapeIoU=False, Inner=False,
- ratio=0.7, eps=1e-7, scale=0.0).squeeze(-1).clamp_(0)
此处和loss.py里面的最好是使用同一个参数。
替换完之后的样子->
五、总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充, 目前本专栏免费阅读(暂时,大家尽早关注不迷路~) ,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~