学习资源站

YOLOv11改进-Conv_卷积篇-2024最新线性可变形卷积LDConv替换传统下采样二次创新C3k2(附代码加修改方式)

一、本文介绍

本文给大家带来的最新改进机制是利用 2024 最新的线性 可变形卷积 LDConv 替换YOLOv11的传统 下采样 操作(值得一提的是这个作者和RFAConv是同一个作者),介绍了一种新型的卷积操作——线性可变形卷积(LDConv)。LDConv 旨在解决标准卷积操作的局限性,标准卷积在固定形状和大小的局部窗口中进行采样,难以动态适应不同物体的形状。可变形卷积(Deformable Conv)虽然允许灵活的采样位置,但其参数数量随着卷积核大小呈平方增长,计算效率较低。 LDConv 提供了比可变形卷积更大的灵活性 允许卷积核的参数数量呈线性增长,从而克服了可变形卷积参数数量平方增长的问题 该方法可以起到轻量化的作用

欢迎大家订阅我的专栏一起学习YOLO!



二、原理介绍

官方论文地址: 官方论文地址点击此处即可跳转

官方代码地址: 官方代码地址点击此处即可跳转


这篇文章题为《LDConv: 用于改进卷积神经网络的线性可变形卷积》 ,介绍了一种新型的 卷积操作 ——线性可变形卷积(LDConv)。LDConv 旨在解决标准卷积操作的局限性,标准卷积在固定形状和大小的局部窗口中进行采样,难以动态适应不同物体的形状。可变形卷积(Deformable Conv)虽然允许灵活的采样位置,但其参数数量随着卷积核大小呈平方增长,计算效率较低。

主要内容与原理:
1. 标准卷积的局限性:传统的 卷积神经网络 (CNN)使用固定的方形卷积核,无法动态调整以适应变化的目标形状,这限制了网络从不同空间位置捕捉信息的能力。

2. 可变形卷积(Deformable Conv):可变形卷积通过引入偏移量来调整采样网格,使得卷积核能够灵活地适应物体的形状。然而,其参数数量依然随卷积核的增大而平方增长,计算效率较低。

3. LDConv的引入:
- LDConv 提供了比可变形卷积更大的灵活性,允许卷积核的参数数量呈线性增长,从而克服了可变形卷积参数数量平方增长的问题。
- 它引入了一种坐标生成 算法 ,可以为任意大小的卷积核生成不同的初始采样位置。
- 通过偏移量动态调整采样形状,使卷积核能够更精确地适应目标形状,从而提高特征提取效率。

4.主要贡献:
- LDConv 为参数数量和卷积核大小提供了更多的灵活性,能够在网络开销和性能之间实现更好的平衡。
- 它可用于目标检测等 计算机视觉 任务,实验证明其在COCO2017、VOC 和 VisDrone-DET2021 数据集上表现优越。

5. 目标检测实验:在多个数据集上的实验表明,LDConv 在目标检测任务中提升了CNN的性能,尤其是在处理大目标时,得益于其灵活的采样形状调整能力。

6. 应用与灵活性:
- LDConv 可以替换传统的卷积操作,提升网络性能的同时,不显著增加计算成本。
- 该方法是一种即插即用的卷积操作,能轻松集成到现有 模型 中,并提高在各种任务中的表现 (本文用于替换YOLOv8中的Conv)
- LDConv 还可以用于其他模块(如 FasterBlock 和 GSBottleneck),进一步提高网络效率并减少参数增长 (二次创新)

该论文强调,LDConv 通过灵活调整卷积核的形状和大小,提供了比现有方法(如标准卷积和可变形卷积)更好的计算效率和网络性能的平衡。


三、核心代码

代码的使用方式看章节四!

  1. import math
  2. import torch
  3. import torch.nn as nn
  4. from einops import rearrange
  5. __all__ = ['LDConv', 'C3k2_LDConv1', 'C3k2_LDConv2']
  6. class LDConv(nn.Module):
  7. def __init__(self, inc, outc, num_param, stride=1, bias=None):
  8. super(LDConv, self).__init__()
  9. self.num_param = num_param
  10. self.stride = stride
  11. self.conv = nn.Sequential(nn.Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias),
  12. nn.BatchNorm2d(outc),
  13. nn.SiLU()) # the conv adds the BN and SiLU to compare original Conv in YOLOv5.
  14. self.p_conv = nn.Conv2d(inc, 2 * num_param, kernel_size=3, padding=1, stride=stride)
  15. nn.init.constant_(self.p_conv.weight, 0)
  16. self.p_conv.register_full_backward_hook(self._set_lr)
  17. @staticmethod
  18. def _set_lr(module, grad_input, grad_output):
  19. grad_input = (grad_input[i] * 0.1 for i in range(len(grad_input)))
  20. grad_output = (grad_output[i] * 0.1 for i in range(len(grad_output)))
  21. def forward(self, x):
  22. # N is num_param.
  23. offset = self.p_conv(x)
  24. dtype = offset.data.type()
  25. N = offset.size(1) // 2
  26. # (b, 2N, h, w)
  27. p = self._get_p(offset, dtype)
  28. # (b, h, w, 2N)
  29. p = p.contiguous().permute(0, 2, 3, 1)
  30. q_lt = p.detach().floor()
  31. q_rb = q_lt + 1
  32. q_lt = torch.cat([torch.clamp(q_lt[..., :N], 0, x.size(2) - 1), torch.clamp(q_lt[..., N:], 0, x.size(3) - 1)],
  33. dim=-1).long()
  34. q_rb = torch.cat([torch.clamp(q_rb[..., :N], 0, x.size(2) - 1), torch.clamp(q_rb[..., N:], 0, x.size(3) - 1)],
  35. dim=-1).long()
  36. q_lb = torch.cat([q_lt[..., :N], q_rb[..., N:]], dim=-1)
  37. q_rt = torch.cat([q_rb[..., :N], q_lt[..., N:]], dim=-1)
  38. # clip p
  39. p = torch.cat([torch.clamp(p[..., :N], 0, x.size(2) - 1), torch.clamp(p[..., N:], 0, x.size(3) - 1)], dim=-1)
  40. # bilinear kernel (b, h, w, N)
  41. g_lt = (1 + (q_lt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_lt[..., N:].type_as(p) - p[..., N:]))
  42. g_rb = (1 - (q_rb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_rb[..., N:].type_as(p) - p[..., N:]))
  43. g_lb = (1 + (q_lb[..., :N].type_as(p) - p[..., :N])) * (1 - (q_lb[..., N:].type_as(p) - p[..., N:]))
  44. g_rt = (1 - (q_rt[..., :N].type_as(p) - p[..., :N])) * (1 + (q_rt[..., N:].type_as(p) - p[..., N:]))
  45. # resampling the features based on the modified coordinates.
  46. x_q_lt = self._get_x_q(x, q_lt, N)
  47. x_q_rb = self._get_x_q(x, q_rb, N)
  48. x_q_lb = self._get_x_q(x, q_lb, N)
  49. x_q_rt = self._get_x_q(x, q_rt, N)
  50. # bilinear
  51. x_offset = g_lt.unsqueeze(dim=1) * x_q_lt + \
  52. g_rb.unsqueeze(dim=1) * x_q_rb + \
  53. g_lb.unsqueeze(dim=1) * x_q_lb + \
  54. g_rt.unsqueeze(dim=1) * x_q_rt
  55. x_offset = self._reshape_x_offset(x_offset, self.num_param)
  56. out = self.conv(x_offset)
  57. return out
  58. # generating the inital sampled shapes for the LDConv with different sizes.
  59. def _get_p_n(self, N, dtype):
  60. base_int = round(math.sqrt(self.num_param))
  61. row_number = self.num_param // base_int
  62. mod_number = self.num_param % base_int
  63. p_n_x, p_n_y = torch.meshgrid(
  64. torch.arange(0, row_number),
  65. torch.arange(0, base_int))
  66. p_n_x = torch.flatten(p_n_x)
  67. p_n_y = torch.flatten(p_n_y)
  68. if mod_number > 0:
  69. mod_p_n_x, mod_p_n_y = torch.meshgrid(
  70. torch.arange(row_number, row_number + 1),
  71. torch.arange(0, mod_number))
  72. mod_p_n_x = torch.flatten(mod_p_n_x)
  73. mod_p_n_y = torch.flatten(mod_p_n_y)
  74. p_n_x, p_n_y = torch.cat((p_n_x, mod_p_n_x)), torch.cat((p_n_y, mod_p_n_y))
  75. p_n = torch.cat([p_n_x, p_n_y], 0)
  76. p_n = p_n.view(1, 2 * N, 1, 1).type(dtype)
  77. return p_n
  78. # no zero-padding
  79. def _get_p_0(self, h, w, N, dtype):
  80. p_0_x, p_0_y = torch.meshgrid(
  81. torch.arange(0, h * self.stride, self.stride),
  82. torch.arange(0, w * self.stride, self.stride))
  83. p_0_x = torch.flatten(p_0_x).view(1, 1, h, w).repeat(1, N, 1, 1)
  84. p_0_y = torch.flatten(p_0_y).view(1, 1, h, w).repeat(1, N, 1, 1)
  85. p_0 = torch.cat([p_0_x, p_0_y], 1).type(dtype)
  86. return p_0
  87. def _get_p(self, offset, dtype):
  88. N, h, w = offset.size(1) // 2, offset.size(2), offset.size(3)
  89. # (1, 2N, 1, 1)
  90. p_n = self._get_p_n(N, dtype)
  91. # (1, 2N, h, w)
  92. p_0 = self._get_p_0(h, w, N, dtype)
  93. p = p_0 + p_n + offset
  94. return p
  95. def _get_x_q(self, x, q, N):
  96. b, h, w, _ = q.size()
  97. padded_w = x.size(3)
  98. c = x.size(1)
  99. # (b, c, h*w)
  100. x = x.contiguous().view(b, c, -1)
  101. # (b, h, w, N)
  102. index = q[..., :N] * padded_w + q[..., N:] # offset_x*w + offset_y
  103. # (b, c, h*w*N)
  104. index = index.contiguous().unsqueeze(dim=1).expand(-1, c, -1, -1, -1).contiguous().view(b, c, -1)
  105. x_offset = x.gather(dim=-1, index=index).contiguous().view(b, c, h, w, N)
  106. return x_offset
  107. # Stacking resampled features in the row direction.
  108. @staticmethod
  109. def _reshape_x_offset(x_offset, num_param):
  110. b, c, h, w, n = x_offset.size()
  111. # using Conv3d
  112. # x_offset = x_offset.permute(0,1,4,2,3), then Conv3d(c,c_out, kernel_size =(num_param,1,1),stride=(num_param,1,1),bias= False)
  113. # using 1 × 1 Conv
  114. # x_offset = x_offset.permute(0,1,4,2,3), then, x_offset.view(b,c×num_param,h,w) finally, Conv2d(c×num_param,c_out, kernel_size =1,stride=1,bias= False)
  115. # using the column conv as follow, then, Conv2d(inc, outc, kernel_size=(num_param, 1), stride=(num_param, 1), bias=bias)
  116. x_offset = rearrange(x_offset, 'b c h w n -> b c (h n) w')
  117. return x_offset
  118. class Bottleneck(nn.Module):
  119. """Standard bottleneck."""
  120. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
  121. """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
  122. super().__init__()
  123. c_ = int(c2 * e) # hidden channels
  124. self.cv1 = Conv(c1, c_, k[0], 1)
  125. self.cv2 = Conv(c_, c2, k[1], 1, g=g)
  126. self.add = shortcut and c1 == c2
  127. def forward(self, x):
  128. """Applies the YOLO FPN to input data."""
  129. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  130. class Bottleneck_LDConv(nn.Module):
  131. # Standard bottleneck with DCN
  132. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5): # ch_in, ch_out, shortcut, groups, kernels, expand
  133. super().__init__()
  134. c_ = int(c2 * e) # hidden channels
  135. self.cv1 = Conv(c1, c_, k[0], 1)
  136. self.cv2 = LDConv(c_, c2, 3)
  137. self.add = shortcut and c1 == c2
  138. def forward(self, x):
  139. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  140. def autopad(k, p=None, d=1): # kernel, padding, dilation
  141. """Pad to 'same' shape outputs."""
  142. if d > 1:
  143. k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
  144. if p is None:
  145. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  146. return p
  147. class Conv(nn.Module):
  148. """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
  149. default_act = nn.SiLU() # default activation
  150. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
  151. """Initialize Conv layer with given arguments including activation."""
  152. super().__init__()
  153. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
  154. self.bn = nn.BatchNorm2d(c2)
  155. self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
  156. def forward(self, x):
  157. """Apply convolution, batch normalization and activation to input tensor."""
  158. return self.act(self.bn(self.conv(x)))
  159. def forward_fuse(self, x):
  160. """Perform transposed convolution of 2D data."""
  161. return self.act(self.conv(x))
  162. class C2f(nn.Module):
  163. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  164. def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
  165. """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
  166. super().__init__()
  167. self.c = int(c2 * e) # hidden channels
  168. self.cv1 = Conv(c1, 2 * self.c, 1, 1)
  169. self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
  170. self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
  171. def forward(self, x):
  172. """Forward pass through C2f layer."""
  173. y = list(self.cv1(x).chunk(2, 1))
  174. y.extend(m(y[-1]) for m in self.m)
  175. return self.cv2(torch.cat(y, 1))
  176. def forward_split(self, x):
  177. """Forward pass using split() instead of chunk()."""
  178. y = list(self.cv1(x).split((self.c, self.c), 1))
  179. y.extend(m(y[-1]) for m in self.m)
  180. return self.cv2(torch.cat(y, 1))
  181. class C3(nn.Module):
  182. """CSP Bottleneck with 3 convolutions."""
  183. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  184. """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
  185. super().__init__()
  186. c_ = int(c2 * e) # hidden channels
  187. self.cv1 = Conv(c1, c_, 1, 1)
  188. self.cv2 = Conv(c1, c_, 1, 1)
  189. self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
  190. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
  191. def forward(self, x):
  192. """Forward pass through the CSP bottleneck with 2 convolutions."""
  193. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
  194. class C3k(C3):
  195. """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
  196. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
  197. """Initializes the C3k module with specified channels, number of layers, and configurations."""
  198. super().__init__(c1, c2, n, shortcut, g, e)
  199. c_ = int(c2 * e) # hidden channels
  200. # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  201. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  202. class C3kLDConv(C3):
  203. """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
  204. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
  205. """Initializes the C3k module with specified channels, number of layers, and configurations."""
  206. super().__init__(c1, c2, n, shortcut, g, e)
  207. c_ = int(c2 * e) # hidden channels
  208. # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  209. self.m = nn.Sequential(*(Bottleneck_LDConv(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  210. class C3k2_LDConv1(C2f):
  211. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  212. def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
  213. """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
  214. super().__init__(c1, c2, n, shortcut, g, e)
  215. self.m = nn.ModuleList(
  216. C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck_LDConv(self.c, self.c, shortcut, g) for _ in range(n)
  217. )
  218. class C3k2_LDConv2(C2f):
  219. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  220. def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
  221. """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
  222. super().__init__(c1, c2, n, shortcut, g, e)
  223. self.m = nn.ModuleList(
  224. C3kLDConv(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
  225. )
  226. if __name__ == "__main__":
  227. # Generating Sample image
  228. image_size = (1, 64, 224, 224)
  229. image = torch.rand(*image_size)
  230. # Model
  231. model = C3k2_LDConv2(64, 64)
  232. out = model(image)
  233. print(out.size())


四、添加方法

4.1 修改一

第一还是建立文件,我们找到如下 ultralytics /nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹( 用群内的文件的话已经有了无需新建) !然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。


4.3 修改三

第三步找到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可)


4.4 修改四

找到文件到如下文件'ultralytics/nn/tasks.py',在其中的parse_model方法中添加即可。


到此就修改完成了,大家可以复制下面的yaml文件运行。


五、正式训练


5.1 yaml文件1

训练信息:YOLO11-LDConv summary: 337 layers, 2,427,141 parameters, 2,427,125 gradients, 6.2 GFLOPs

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, LDConv, [128, 6, 2]] # 1-P2/4
  17. - [-1, 2, C3k2, [256, False, 0.25]]
  18. - [-1, 1, LDConv, [256, 6, 2]] # 3-P3/8
  19. - [-1, 2, C3k2, [512, False, 0.25]]
  20. - [-1, 1, LDConv, [512, 6, 2]] # 5-P4/16
  21. - [-1, 2, C3k2, [512, True]]
  22. - [-1, 1, LDConv, [1024, 6, 2]] # 7-P5/32
  23. - [-1, 2, C3k2, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA, [1024]] # 10
  26. # YOLO11n head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, LDConv, [256, 6, 2]]
  35. - [[-1, 13], 1, Concat, [1]] # cat head P4
  36. - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
  37. - [-1, 1, LDConv, [512, 6, 2]]
  38. - [[-1, 10], 1, Concat, [1]] # cat head P5
  39. - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  40. - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


5.2 yaml文件2

训练信息:YOLO11-C3k2-LDConv-1 summary: 335 layers, 2,566,923 parameters, 2,566,907 gradients, 6.3 GFLOPs

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2_LDConv1, [256, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2_LDConv1, [512, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2_LDConv1, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2_LDConv1, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA, [1024]] # 10
  26. # YOLO11n head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2_LDConv1, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2_LDConv1, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, Conv, [256, 3, 2]]
  35. - [[-1, 13], 1, Concat, [1]] # cat head P4
  36. - [-1, 2, C3k2_LDConv1, [512, False]] # 19 (P4/16-medium)
  37. - [-1, 1, Conv, [512, 3, 2]]
  38. - [[-1, 10], 1, Concat, [1]] # cat head P5
  39. - [-1, 2, C3k2_LDConv1, [1024, True]] # 22 (P5/32-large)
  40. - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


5.3 yaml文件3

训练信息:YOLO11-C3k2-LDConv-2 summary: 338 layers, 2,499,489 parameters, 2,499,473 gradients, 6.4 GFLOPs

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2_LDConv2, [256, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2_LDConv2, [512, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2_LDConv2, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2_LDConv2, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA, [1024]] # 10
  26. # YOLO11n head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2_LDConv2, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2_LDConv2, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, Conv, [256, 3, 2]]
  35. - [[-1, 13], 1, Concat, [1]] # cat head P4
  36. - [-1, 2, C3k2_LDConv2, [512, False]] # 19 (P4/16-medium)
  37. - [-1, 1, Conv, [512, 3, 2]]
  38. - [[-1, 10], 1, Concat, [1]] # cat head P5
  39. - [-1, 2, C3k2_LDConv2, [1024, True]] # 22 (P5/32-large)
  40. - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

5.4 训练代码

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。

  1. import warnings
  2. warnings.filterwarnings('ignore')
  3. from ultralytics import YOLO
  4. if __name__ == '__main__':
  5. model = YOLO('yolov8-MLLA.yaml')
  6. # 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,
  7. # 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!
  8. # model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
  9. model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",
  10. # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
  11. cache=False,
  12. imgsz=640,
  13. epochs=150,
  14. single_cls=False, # 是否是单类别检测
  15. batch=16,
  16. close_mosaic=0,
  17. workers=0,
  18. device='0',
  19. optimizer='SGD', # using SGD
  20. # resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址
  21. amp=False, # 如果出现训练损失为Nan可以关闭amp
  22. project='runs/train',
  23. name='exp',
  24. )


5.5 训练过程截图


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~