一、本文介绍
本文给大家带来的最新改机制是给YOLOv11分别增加 小目标P2 和 大目标检测层P6 (两个yaml文件),有的读者可能检测的目标是小目标,那么我们增加小 目标检测 层是非常容易涨点的,或者你的检测目标是图片占比很大的(很少有这样的)那么增加大目标检测层是非常好的选择,本文根据YOLOv8官方提供的P2和P6两个版本yaml文件,进行YOLOv11的参考性移植,大家可以选择P2或者P6作为自己的一个论文创新点.
| P2版本的训练信息:YOLO11-P2 summary: 379 layers, 2,669,988 parameters, 2,669,972 gradients, 10.4 GFLOPs |
| P6版本的训练信息:YOLO11-P6 summary: 385 layers, 3,691,148 parameters, 3,691,132 gradients, 5.1 GFLOPs |
欢迎大家订阅我的专栏一起学习YOLO!
二、yaml文件
2.1 增加 小目标检测 层P2的yaml文件
此版本的训练信息:YOLO11-P2 summary: 379 layers, 2,669,988 parameters, 2,669,972 gradients, 10.4 GFLOPs
注意:其中的小目标检测层P2的False,大家可以尝试设置为True尝试效果.
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
- s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
- m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
- l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
- x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
- # YOLO11n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 2, C3k2, [256, False, 0.25]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 2, C3k2, [512, False, 0.25]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 2, C3k2, [512, True]]
- - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- - [-1, 2, C3k2, [1024, True]]
- - [-1, 1, SPPF, [1024, 5]] # 9
- - [-1, 2, C2PSA, [1024]] # 10
- # YOLOv8.0-p2 head
- head:
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 2, C3k2, [512, False]] # 13
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 2], 1, Concat, [1]] # cat backbone P2
- - [-1, 2, C3k2, [128, False]] # 19 (P2/4-xsmall) # 小目标可以尝试将这里的False设置为True.
- - [-1, 1, Conv, [128, 3, 2]]
- - [[-1, 16], 1, Concat, [1]] # cat head P3
- - [-1, 2, C3k2, [256, False]] # 22 (P3/8-small)
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 13], 1, Concat, [1]] # cat head P4
- - [-1, 2, C3k2, [512, False]] # 25 (P4/16-medium)
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 10], 1, Concat, [1]] # cat head P5
- - [-1, 2, C3k2, [1024, True]] # 28 (P5/32-large)
- - [[19, 22, 25, 28], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)
2.2 增加大目标检测层P6的yaml文件
此版本的训练信息:YOLO11-P6 summary: 385 layers, 3,691,148 parameters, 3,691,132 gradients, 5.1 GFLOPs
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
- s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
- m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
- l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
- x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
- # YOLO11n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 2, C3k2, [128, False, 0.25]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 2, C3k2, [256, False, 0.25]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 2, C3k2, [512, False, 0.25]]
- - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
- - [-1, 2, C3k2, [768, True]]
- - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
- - [-1, 2, C3k2, [1024, True]]
- - [-1, 1, SPPF, [1024, 5]] # 11
- # YOLOv11.0x6 head
- head:
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 8], 1, Concat, [1]] # cat backbone P5
- - [-1, 2, C3k2, [768, False]] # 14
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 2, C3k2, [512, False]] # 17
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 2, C3k2, [256, False]] # 20 (P3/8-small)
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 17], 1, Concat, [1]] # cat head P4
- - [-1, 2, C3k2, [512, False]] # 23 (P4/16-medium)
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 14], 1, Concat, [1]] # cat head P5
- - [-1, 2, C3k2, [768, True]] # 26 (P5/32-large)
- - [-1, 1, Conv, [768, 3, 2]]
- - [[-1, 11], 1, Concat, [1]] # cat head P6
- - [-1, 2, C3k2, [1024, True]] # 29 (P6/64-xlarge) # True也可设置False尝试.
- - [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)
2.3 训练代码
大家可以创建一个py文件将我给的代码 复制粘贴 进去,配置好自己的文件路径即可运行。
- import warnings
- warnings.filterwarnings('ignore')
- from ultralytics import YOLO
- if __name__ == '__main__':
- model = YOLO('yolov8-MLLA.yaml')
- # 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,
- # 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!
- # model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
- model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",
- # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
- cache=False,
- imgsz=640,
- epochs=150,
- single_cls=False, # 是否是单类别检测
- batch=16,
- close_mosaic=0,
- workers=0,
- device='0',
- optimizer='SGD', # using SGD
- # resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址
- amp=False, # 如果出现训练损失为Nan可以关闭amp
- project='runs/train',
- name='exp',
- )
2.4 训练过程截图
三、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~