学习资源站

YOLOv11改进-Neck篇-给yolov11分别增加小目标检测层P2和大目标检测层P6

一、本文介绍

本文给大家带来的最新改机制是给YOLOv11分别增加 小目标P2 大目标检测层P6 (两个yaml文件),有的读者可能检测的目标是小目标,那么我们增加小 目标检测 层是非常容易涨点的,或者你的检测目标是图片占比很大的(很少有这样的)那么增加大目标检测层是非常好的选择,本文根据YOLOv8官方提供的P2和P6两个版本yaml文件,进行YOLOv11的参考性移植,大家可以选择P2或者P6作为自己的一个论文创新点.

P2版本的训练信息:YOLO11-P2 summary: 379 layers, 2,669,988 parameters, 2,669,972 gradients, 10.4 GFLOPs
P6版本的训练信息:YOLO11-P6 summary: 385 layers, 3,691,148 parameters, 3,691,132 gradients, 5.1 GFLOPs

欢迎大家订阅我的专栏一起学习YOLO!



二、yaml文件

2.1 增加 小目标检测 层P2的yaml文件

此版本的训练信息:YOLO11-P2 summary: 379 layers, 2,669,988 parameters, 2,669,972 gradients, 10.4 GFLOPs

注意:其中的小目标检测层P2的False,大家可以尝试设置为True尝试效果.

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2, [256, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2, [512, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA, [1024]] # 10
  26. # YOLOv8.0-p2 head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  35. - [[-1, 2], 1, Concat, [1]] # cat backbone P2
  36. - [-1, 2, C3k2, [128, False]] # 19 (P2/4-xsmall) # 小目标可以尝试将这里的False设置为True.
  37. - [-1, 1, Conv, [128, 3, 2]]
  38. - [[-1, 16], 1, Concat, [1]] # cat head P3
  39. - [-1, 2, C3k2, [256, False]] # 22 (P3/8-small)
  40. - [-1, 1, Conv, [256, 3, 2]]
  41. - [[-1, 13], 1, Concat, [1]] # cat head P4
  42. - [-1, 2, C3k2, [512, False]] # 25 (P4/16-medium)
  43. - [-1, 1, Conv, [512, 3, 2]]
  44. - [[-1, 10], 1, Concat, [1]] # cat head P5
  45. - [-1, 2, C3k2, [1024, True]] # 28 (P5/32-large)
  46. - [[19, 22, 25, 28], 1, Detect, [nc]] # Detect(P2, P3, P4, P5)


2.2 增加大目标检测层P6的yaml文件

此版本的训练信息:YOLO11-P6 summary: 385 layers, 3,691,148 parameters, 3,691,132 gradients, 5.1 GFLOPs

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2, [128, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2, [256, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2, [512, False, 0.25]]
  22. - [-1, 1, Conv, [768, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2, [768, True]]
  24. - [-1, 1, Conv, [1024, 3, 2]] # 9-P6/64
  25. - [-1, 2, C3k2, [1024, True]]
  26. - [-1, 1, SPPF, [1024, 5]] # 11
  27. # YOLOv11.0x6 head
  28. head:
  29. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  30. - [[-1, 8], 1, Concat, [1]] # cat backbone P5
  31. - [-1, 2, C3k2, [768, False]] # 14
  32. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  33. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  34. - [-1, 2, C3k2, [512, False]] # 17
  35. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  36. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  37. - [-1, 2, C3k2, [256, False]] # 20 (P3/8-small)
  38. - [-1, 1, Conv, [256, 3, 2]]
  39. - [[-1, 17], 1, Concat, [1]] # cat head P4
  40. - [-1, 2, C3k2, [512, False]] # 23 (P4/16-medium)
  41. - [-1, 1, Conv, [512, 3, 2]]
  42. - [[-1, 14], 1, Concat, [1]] # cat head P5
  43. - [-1, 2, C3k2, [768, True]] # 26 (P5/32-large)
  44. - [-1, 1, Conv, [768, 3, 2]]
  45. - [[-1, 11], 1, Concat, [1]] # cat head P6
  46. - [-1, 2, C3k2, [1024, True]] # 29 (P6/64-xlarge) # True也可设置False尝试.
  47. - [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5, P6)


2.3 训练代码

大家可以创建一个py文件将我给的代码 复制粘贴 进去,配置好自己的文件路径即可运行。

  1. import warnings
  2. warnings.filterwarnings('ignore')
  3. from ultralytics import YOLO
  4. if __name__ == '__main__':
  5. model = YOLO('yolov8-MLLA.yaml')
  6. # 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,
  7. # 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!
  8. # model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
  9. model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",
  10. # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
  11. cache=False,
  12. imgsz=640,
  13. epochs=150,
  14. single_cls=False, # 是否是单类别检测
  15. batch=16,
  16. close_mosaic=0,
  17. workers=0,
  18. device='0',
  19. optimizer='SGD', # using SGD
  20. # resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址
  21. amp=False, # 如果出现训练损失为Nan可以关闭amp
  22. project='runs/train',
  23. name='exp',
  24. )


2.4 训练过程截图

​​


三、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~