学习资源站

YOLOv11改进-Conv篇-利用FasterBlock二次创新C3k2提出一种全新的结构(全网独家首发)

一、本文介绍

本文给大家带来的改进机制是利用FasterNet的FasterBlock改进特征提取网络,将其用来改进 ResNet网络 ,其旨在 提高计算速度而不牺牲准确性 ,特别是在视觉任务中。它通过一种称为 部分卷积(PConv) 的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率,同时本文的内容为我独家创新,全网仅此一份, 同时本文的改进机制参数量下降、计算量均有下降

欢迎大家订阅我的专栏一起学习YOLO!



二、FasterNet原理

论文地址: 官方论文地址

代码地址: 官方代码地址


2.1 FasterNet的基本原理

FasterNet 是一种高效的 神经网络 架构,旨在 提高计算速度而不牺牲准确性 ,特别是在视觉任务中。它通过一种称为 部分卷积(PConv) 的新技术来减少冗余计算和内存访问。这种方法使得FasterNet在多种设备上运行速度比其他网络快得多,同时在各种视觉任务中保持高准确率。例如,FasterNet在ImageNet-1k数据集上的表现超过了其他模型,如 MobileViT-XXS ,展现了其在速度和准确度方面的优势。

FasterNet的基本原理可以总结为以下几点:

1. 部分卷积(PConv): FasterNet引入了部分卷积(PConv),这是一种新型的卷积方法,它通过只处理输入通道的一部分来减少计算量和内存访问。

2. 加速神经网络 : FasterNet利用PConv的优势,实现了在多种设备上比其他现有神经网络更快的运行速度,同时保持了较高的准确度。

下面为大家展示的是 FasterNet的整体架构

它包括四个层次化的阶段,每个阶段由一系列FasterNet块组成,并由嵌入或合并层开头。最后三层用于特征分类。在每个FasterNet块中,PConv层之后是两个点状卷积(PWConv)层。为了保持特征多样性并实现更低的延迟,仅在中间层之后放置了 归一化和激活层


2.2 部分卷积

部分卷积(PConv) 是一种 卷积神经网络 中的操作,旨在提高计算效率。它通过 只在输入特征图的一部分上执行卷积操作 ,而非传统卷积操作中的全面应用。这样,PConv可以减少不必要的计算和内存访问,因为它忽略了输入中认为是冗余的部分。这种方法特别适合在资源有限的设备上运行 深度学习 模型,因为它可以在不牺牲太多性能的情况下,显著降低计算需求。

下面我为大家展示了FasterNet中的 部分卷积(PConv)与传统卷积和深度卷积/分组卷积的比较

PConv通过仅对输入通道的一小部分应用滤波器,同时保持其余通道不变,实现了快速和高效的特性提取。PConv的计算复杂度 (FLOPs) 低于常规卷积,但高于深度卷积/分组卷积,这样在减少计算资源的同时提高了运算性能。


2.3 加速神经网络

加速神经网络 主要通过优化计算路径、减少模型大小和复杂性、提高操作效率,以及使用高效的 硬件 实现等方式来降低模型的推理时间。这些方法包括

简化网络层 使用更快的激活函数 采用量化技术 浮点运算转换为整数运算 ,以及使用特殊的算法来减少内存访问次数等。通过这些策略,可以在不损害模型准确性的前提下,使神经网络能够更快地处理数据和做出预测。


三、FasterBlock的核心代码

核心代码的使用方式看章节四!

  1. import torch
  2. import torch.nn as nn
  3. from timm.models.layers import DropPath
  4. __all__ = ['C3k2_FasterBlock']
  5. class Partial_conv3(nn.Module):
  6. def __init__(self, dim, n_div, forward):
  7. super().__init__()
  8. self.dim_conv3 = dim // n_div
  9. self.dim_untouched = dim - self.dim_conv3
  10. self.partial_conv3 = nn.Conv2d(self.dim_conv3, self.dim_conv3, 3, 1, 1, bias=False)
  11. if forward == 'slicing':
  12. self.forward = self.forward_slicing
  13. elif forward == 'split_cat':
  14. self.forward = self.forward_split_cat
  15. else:
  16. raise NotImplementedError
  17. def forward_slicing(self, x):
  18. # only for inference
  19. x = x.clone() # !!! Keep the original input intact for the residual connection later
  20. x[:, :self.dim_conv3, :, :] = self.partial_conv3(x[:, :self.dim_conv3, :, :])
  21. return x
  22. def forward_split_cat(self, x):
  23. # for training/inference
  24. x1, x2 = torch.split(x, [self.dim_conv3, self.dim_untouched], dim=1)
  25. x1 = self.partial_conv3(x1)
  26. x = torch.cat((x1, x2), 1)
  27. return x
  28. def autopad(k, p=None, d=1): # kernel, padding, dilation
  29. """Pad to 'same' shape outputs."""
  30. if d > 1:
  31. k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
  32. if p is None:
  33. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  34. return p
  35. class Conv(nn.Module):
  36. """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
  37. default_act = nn.SiLU() # default activation
  38. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
  39. """Initialize Conv layer with given arguments including activation."""
  40. super().__init__()
  41. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
  42. self.bn = nn.BatchNorm2d(c2)
  43. self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
  44. def forward(self, x):
  45. """Apply convolution, batch normalization and activation to input tensor."""
  46. return self.act(self.bn(self.conv(x)))
  47. def forward_fuse(self, x):
  48. """Perform transposed convolution of 2D data."""
  49. return self.act(self.conv(x))
  50. class FasterBlock(nn.Module):
  51. def __init__(self,
  52. inc,
  53. dim,
  54. n_div=4,
  55. mlp_ratio=2,
  56. drop_path=0.1,
  57. layer_scale_init_value=0.0,
  58. act_layer='RELU',
  59. norm_layer='BN',
  60. pconv_fw_type='split_cat'
  61. ):
  62. super().__init__()
  63. self.dim = dim
  64. self.inc = inc
  65. self.mlp_ratio = mlp_ratio
  66. self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
  67. self.n_div = n_div
  68. mlp_hidden_dim = int(dim * mlp_ratio)
  69. mlp_layer = [
  70. nn.Conv2d(dim, mlp_hidden_dim, 1, bias=False),
  71. nn.BatchNorm2d(mlp_hidden_dim),
  72. nn.ReLU(),
  73. nn.Conv2d(mlp_hidden_dim, dim, 1, bias=False)
  74. ]
  75. self.mlp = nn.Sequential(*mlp_layer)
  76. self.spatial_mixing = Partial_conv3(
  77. dim,
  78. n_div,
  79. pconv_fw_type
  80. )
  81. if inc != dim: # 在输入和输出不等时添加额外处理一步
  82. self.firstConv = Conv(inc, dim, 1)
  83. if layer_scale_init_value > 0:
  84. self.layer_scale = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
  85. self.forward = self.forward_layer_scale
  86. else:
  87. self.forward = self.forward
  88. def forward(self, x):
  89. if self.inc != self.dim:
  90. x = self.firstConv(x)
  91. shortcut = x
  92. x = self.spatial_mixing(x)
  93. x = shortcut + self.drop_path(self.mlp(x))
  94. return x
  95. def forward_layer_scale(self, x):
  96. if self.inc != self.dim:
  97. x = self.firstConv(x)
  98. shortcut = x
  99. x = self.spatial_mixing(x)
  100. x = shortcut + self.drop_path(
  101. self.layer_scale.unsqueeze(-1).unsqueeze(-1) * self.mlp(x))
  102. return x
  103. def autopad(k, p=None, d=1): # kernel, padding, dilation
  104. """Pad to 'same' shape outputs."""
  105. if d > 1:
  106. k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
  107. if p is None:
  108. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  109. return p
  110. class Conv(nn.Module):
  111. """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
  112. default_act = nn.SiLU() # default activation
  113. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
  114. """Initialize Conv layer with given arguments including activation."""
  115. super().__init__()
  116. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
  117. self.bn = nn.BatchNorm2d(c2)
  118. self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
  119. def forward(self, x):
  120. """Apply convolution, batch normalization and activation to input tensor."""
  121. return self.act(self.bn(self.conv(x)))
  122. def forward_fuse(self, x):
  123. """Perform transposed convolution of 2D data."""
  124. return self.act(self.conv(x))
  125. class Bottleneck(nn.Module):
  126. """Standard bottleneck."""
  127. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
  128. """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
  129. super().__init__()
  130. c_ = int(c2 * e) # hidden channels
  131. self.cv1 = Conv(c1, c_, k[0], 1)
  132. self.cv2 = Conv(c_, c2, k[1], 1, g=g)
  133. self.add = shortcut and c1 == c2
  134. def forward(self, x):
  135. """Applies the YOLO FPN to input data."""
  136. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  137. class C2f(nn.Module):
  138. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  139. def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
  140. """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
  141. super().__init__()
  142. self.c = int(c2 * e) # hidden channels
  143. self.cv1 = Conv(c1, 2 * self.c, 1, 1)
  144. self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
  145. self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
  146. def forward(self, x):
  147. """Forward pass through C2f layer."""
  148. y = list(self.cv1(x).chunk(2, 1))
  149. y.extend(m(y[-1]) for m in self.m)
  150. return self.cv2(torch.cat(y, 1))
  151. def forward_split(self, x):
  152. """Forward pass using split() instead of chunk()."""
  153. y = list(self.cv1(x).split((self.c, self.c), 1))
  154. y.extend(m(y[-1]) for m in self.m)
  155. return self.cv2(torch.cat(y, 1))
  156. class C3(nn.Module):
  157. """CSP Bottleneck with 3 convolutions."""
  158. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  159. """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
  160. super().__init__()
  161. c_ = int(c2 * e) # hidden channels
  162. self.cv1 = Conv(c1, c_, 1, 1)
  163. self.cv2 = Conv(c1, c_, 1, 1)
  164. self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
  165. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
  166. def forward(self, x):
  167. """Forward pass through the CSP bottleneck with 2 convolutions."""
  168. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
  169. class C3k(C3):
  170. """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
  171. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
  172. """Initializes the C3k module with specified channels, number of layers, and configurations."""
  173. super().__init__(c1, c2, n, shortcut, g, e)
  174. c_ = int(c2 * e) # hidden channels
  175. # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  176. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  177. class C3k2_FasterBlock(C2f):
  178. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  179. def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
  180. """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
  181. super().__init__(c1, c2, n, shortcut, g, e)
  182. self.m = nn.ModuleList(
  183. C3k(self.c, self.c, 2, shortcut, g) if c3k else FasterBlock(self.c, self.c) for _ in range(n)
  184. )
  185. # 解析 c3k在主干和网络最后一个C3k2的时候设置True走的是C3k, 否则我们走的是MSBlock
  186. if __name__ == "__main__":
  187. # Generating Sample image
  188. image_size = (1, 64, 240, 240)
  189. image = torch.rand(*image_size)
  190. # Model
  191. model = C3k2_FasterBlock(64, 64)
  192. out = model(image)
  193. print(out.size())

四、 手把手教你添加FasterBlock机制

4.1 修改一

第一还是建立文件,我们找到如下ultralytics/nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹( 用群内的文件的话已经有了无需新建) !然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。


4.3 修改三

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四

按照我的添加在parse_model里添加即可。


到此就修改完成了,大家可以复制下面的yaml文件运行。


五、FasterBlock的yaml文件和运行记录

5.1 FasterBlock的yaml文件

此版本的训练信息:YOLO11-C3k2-FasterBlock summary: 330 layers, 2,548,347 parameters, 2,548,331 gradients, 6.2 GFLOPs

# 解析 c3k在主干和网络最后一个C3k2的时候设置True走的是C3k, 否则我们走的是 FasterBlock(也就是Neck的三个False时)

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2_FasterBlock, [256, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2_FasterBlock, [512, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2_FasterBlock, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2_FasterBlock, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA, [1024]] # 10
  26. # YOLO11n head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2_FasterBlock, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2_FasterBlock, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, Conv, [256, 3, 2]]
  35. - [[-1, 13], 1, Concat, [1]] # cat head P4
  36. - [-1, 2, C3k2_FasterBlock, [512, False]] # 19 (P4/16-medium)
  37. - [-1, 1, Conv, [512, 3, 2]]
  38. - [[-1, 10], 1, Concat, [1]] # cat head P5
  39. - [-1, 2, C3k2_FasterBlock, [1024, True]] # 22 (P5/32-large)
  40. - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)

5.2 训练代码

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。

  1. import warnings
  2. warnings.filterwarnings('ignore')
  3. from ultralytics import YOLO
  4. if __name__ == '__main__':
  5. model = YOLO('ultralytics/cfg/models/v8/yolov8-C2f-FasterBlock.yaml')
  6. # model.load('yolov8n.pt') # loading pretrain weights
  7. model.train(data=r'替换数据集yaml文件地址',
  8. # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
  9. cache=False,
  10. imgsz=640,
  11. epochs=150,
  12. single_cls=False, # 是否是单类别检测
  13. batch=4,
  14. close_mosaic=10,
  15. workers=0,
  16. device='0',
  17. optimizer='SGD', # using SGD
  18. # resume='', # 如过想续训就设置last.pt的地址
  19. amp=False, # 如果出现训练损失为Nan可以关闭amp
  20. project='runs/train',
  21. name='exp',
  22. )


5.3 FasterBlock的训练过程截图


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~