学习资源站

YOLOv11改进-主干_Backbone篇-RevColV1可逆列目标检测网络(特征解耦助力小目标检测)

一、本文介绍

本文给大家带来的是主干网络 RevColV1 ,翻译过来就是可逆列网络,其是一种新型的 神经网络 设计 (和以前的网络结构的传播方式不太一样) ,由多个 子网络 (列)通过多级可逆连接组成。这种设计允许在前向传播过程中特征解耦,保持总信息无压缩或丢弃。其非常适合数据集庞大的目标检测任务, 数据集数量越多其效果性能越好 ,亲测在包含1000个图片的数据集上其涨点效果就非常明显了,大家可以多动手尝试, 其RevColV2的论文同时已经发布如果代码开源我也会第一时间给大家上传。



二、RevColV1的框架原理

​​

官方论文地址: 官方论文地址

官方代码地址: 官方代码地址

​​


2.1 RevColV1的基本原理

RevCol的主要原理和思想是利用可逆连接来设计网络结构,允许信息在网络的不同分支(列)间自由流动而不丢失。这种多列结构在 前向传播 过程中逐渐解耦特征,并保持全部信息,而不是进行压缩或舍弃。这样的设计提高了网络在图像分类、对象检测和语义分割等 计算机视觉 任务中的表现,尤其是在参数量大和数据集大时。

RevCol的创新点我将其总结为以下几点:

1. 可逆连接设计:通过多个子网络(列)间的可逆连接,保证信息在前向传播过程中不丢失。
2. 特征解耦:在每个列中,特征逐渐被解耦,保持总信息而非压缩或舍弃。
3. 适用于大型数据集和参数:在大型数据集和高参数预算下表现出色。
4. 跨模型应用:可作为宏架构方式,应用于变换器或其他神经网络,改善计算机视觉和NLP任务的性能。

简单总结: RevCol通过其独特的多列结构和可逆连接设计,使得网络能够在处理信息时保持完整性,提高特征处理的效率。这种架构在数据丰富且复杂的情况下尤为有效,且可灵活应用于不同类型的 神经网络模型 中。

其中的创新点第四点不用叙述了,网络结构可以应用于我们的 YOLOv8 就是最好的印证。

​这是论文中的图片1,展示了传统单列网络(a)与RevCol(b)的信息传播对比。在图(a)中,信息通过一个接一个的层线性传播,每层处理后传递给下一层直至输出。而在图(b)中,RevCol通过多个 并行 列(Col 1 到 Col N)处理信息,其中可逆连接(蓝色曲线)允许信息在列间传递,保持低级别和语义级别的信息传播。这种结构有助于整个网络维持更丰富的信息,并且每个列都能从其他列中学习到信息,增强了特征的表达和网络的学习能力 (但是这种做法导致模型的参数量非常巨大,而且训练速度缓慢计算量比较大)。


2.1.1 可逆连接设计

在RevCol中的可逆连接设计允许多个子网络(称为列)之间进行信息的双向流动。这意味着在前向传播的过程中,每一列都能接收到前一列的信息,并将自己的处理结果传递给下一列,同时能够保留传递过程中的所有信息。这种设计避免了在传统的深度网络中常见的信息丢失问题,特别是在网络层次较深时。因此,RevCol可以在深层网络中维持丰富的特征表示,从而提高了模型对数据的表示能力和学习效率。

这张图片展示了RevCol网络的不同组成部分和信息流动方式。

  • 图 (a) 展示了RevNet中的一个可逆单元,标识了不同时间步长的状态。
  • 图 (b) 展示了多级可逆单元,所有输入在不同级别上进行信息交换。
  • 图 (c) 提供了整个可逆列网络架构的概览,其中包含了简化的多级可逆单元。

整个设计允许信息在网络的不同层级和列之间自由流动,而不会丢失任何信息,这对于深层网络的学习和特征提取是非常有益的 (我觉得这里有点类似于Neck部分允许层级之间相互交流信息)


2.1.2 特征解耦

特征解耦是指在RevCol网络的每个子网络(列)中,特征通过可逆连接传递,同时独立地进行处理和学习。这样,每个列都能保持输入信息的完整性,而不会像传统的深度网络那样,在层与层之间传递时压缩或丢弃信息。随着信息在列中的前进,特征之间的关联性逐渐减弱(解耦),使得网络能够更细致地捕捉并强调重要的特征,这有助于提高模型在复杂任务上的性能和泛化能力。

这张图展示了RevCol网络的一个级别(Level l)的微观设计,以及特征融合模块(Fusion Block)的设计。在图(a)中,展示了ConvNeXt级别的标准结构,包括下采样块和残差块。图(b)中的RevCol级别包含了融合模块、残差块和可逆操作。这里的特征解耦是通过融合模块实现的,该模块接收相邻级别的特征图 X_{t-1} , X_{t-m+1} 作为输入,并将它们融合以生成新的特征表示。这样,不同级别的特征在融合过程中被解耦,每个级别维持其信息而不压缩或舍弃。图(c)详细描述了融合模块的内部结构,它通过上采样和下采样操作处理不同分辨率的特征图,然后将它们线性叠加,形成为ConvNeXt块提供的特征。这种设计让特征在不同分辨率间流动时进行有效融合。


2.2 RevColV1的表现

这张图片展示了伴随着FLOPs的增长TOP1的准确率情况,可以看出RevColV1伴随着FLOPs的增加效果逐渐明显。


三、RevColV1的核心代码

下面的代码是RevColV1的全部代码,其中包含多个版本,但是大家需要注意这个模型训练非常耗时,参数量非常大,但是其特点就是参数量越大效果越好。其使用方式看章节四。

  1. # --------------------------------------------------------
  2. # Reversible Column Networks
  3. # Copyright (c) 2022 Megvii Inc.
  4. # Licensed under The Apache License 2.0 [see LICENSE for details]
  5. # Written by Yuxuan Cai
  6. # --------------------------------------------------------
  7. from typing import Tuple, Any, List
  8. from timm.models.layers import trunc_normal_
  9. import torch
  10. import torch.nn as nn
  11. import torch.nn.functional as F
  12. from timm.models.layers import DropPath
  13. __all__ = ['revcol_tiny', 'revcol_small', 'revcol_base', 'revcol_large', 'revcol_xlarge']
  14. class UpSampleConvnext(nn.Module):
  15. def __init__(self, ratio, inchannel, outchannel):
  16. super().__init__()
  17. self.ratio = ratio
  18. self.channel_reschedule = nn.Sequential(
  19. # LayerNorm(inchannel, eps=1e-6, data_format="channels_last"),
  20. nn.Linear(inchannel, outchannel),
  21. LayerNorm(outchannel, eps=1e-6, data_format="channels_last"))
  22. self.upsample = nn.Upsample(scale_factor=2 ** ratio, mode='nearest')
  23. def forward(self, x):
  24. x = x.permute(0, 2, 3, 1)
  25. x = self.channel_reschedule(x)
  26. x = x = x.permute(0, 3, 1, 2)
  27. return self.upsample(x)
  28. class LayerNorm(nn.Module):
  29. r""" LayerNorm that supports two data formats: channels_last (default) or channels_first.
  30. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
  31. shape (batch_size, height, width, channels) while channels_first corresponds to inputs
  32. with shape (batch_size, channels, height, width).
  33. """
  34. def __init__(self, normalized_shape, eps=1e-6, data_format="channels_first", elementwise_affine=True):
  35. super().__init__()
  36. self.elementwise_affine = elementwise_affine
  37. if elementwise_affine:
  38. self.weight = nn.Parameter(torch.ones(normalized_shape))
  39. self.bias = nn.Parameter(torch.zeros(normalized_shape))
  40. self.eps = eps
  41. self.data_format = data_format
  42. if self.data_format not in ["channels_last", "channels_first"]:
  43. raise NotImplementedError
  44. self.normalized_shape = (normalized_shape,)
  45. def forward(self, x):
  46. if self.data_format == "channels_last":
  47. return F.layer_norm(x, self.normalized_shape, self.weight, self.bias, self.eps)
  48. elif self.data_format == "channels_first":
  49. u = x.mean(1, keepdim=True)
  50. s = (x - u).pow(2).mean(1, keepdim=True)
  51. x = (x - u) / torch.sqrt(s + self.eps)
  52. if self.elementwise_affine:
  53. x = self.weight[:, None, None] * x + self.bias[:, None, None]
  54. return x
  55. class ConvNextBlock(nn.Module):
  56. r""" ConvNeXt Block. There are two equivalent implementations:
  57. (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
  58. (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
  59. We use (2) as we find it slightly faster in PyTorch
  60. Args:
  61. dim (int): Number of input channels.
  62. drop_path (float): Stochastic depth rate. Default: 0.0
  63. layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
  64. """
  65. def __init__(self, in_channel, hidden_dim, out_channel, kernel_size=3, layer_scale_init_value=1e-6, drop_path=0.0):
  66. super().__init__()
  67. self.dwconv = nn.Conv2d(in_channel, in_channel, kernel_size=kernel_size, padding=(kernel_size - 1) // 2,
  68. groups=in_channel) # depthwise conv
  69. self.norm = nn.LayerNorm(in_channel, eps=1e-6)
  70. self.pwconv1 = nn.Linear(in_channel, hidden_dim) # pointwise/1x1 convs, implemented with linear layers
  71. self.act = nn.GELU()
  72. self.pwconv2 = nn.Linear(hidden_dim, out_channel)
  73. self.gamma = nn.Parameter(layer_scale_init_value * torch.ones((out_channel)),
  74. requires_grad=True) if layer_scale_init_value > 0 else None
  75. self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
  76. def forward(self, x):
  77. input = x
  78. x = self.dwconv(x)
  79. x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C)
  80. x = self.norm(x)
  81. x = self.pwconv1(x)
  82. x = self.act(x)
  83. # print(f"x min: {x.min()}, x max: {x.max()}, input min: {input.min()}, input max: {input.max()}, x mean: {x.mean()}, x var: {x.var()}, ratio: {torch.sum(x>8)/x.numel()}")
  84. x = self.pwconv2(x)
  85. if self.gamma is not None:
  86. x = self.gamma * x
  87. x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W)
  88. x = input + self.drop_path(x)
  89. return x
  90. class Decoder(nn.Module):
  91. def __init__(self, depth=[2, 2, 2, 2], dim=[112, 72, 40, 24], block_type=None, kernel_size=3) -> None:
  92. super().__init__()
  93. self.depth = depth
  94. self.dim = dim
  95. self.block_type = block_type
  96. self._build_decode_layer(dim, depth, kernel_size)
  97. self.projback = nn.Sequential(
  98. nn.Conv2d(
  99. in_channels=dim[-1],
  100. out_channels=4 ** 2 * 3, kernel_size=1),
  101. nn.PixelShuffle(4),
  102. )
  103. def _build_decode_layer(self, dim, depth, kernel_size):
  104. normal_layers = nn.ModuleList()
  105. upsample_layers = nn.ModuleList()
  106. proj_layers = nn.ModuleList()
  107. norm_layer = LayerNorm
  108. for i in range(1, len(dim)):
  109. module = [self.block_type(dim[i], dim[i], dim[i], kernel_size) for _ in range(depth[i])]
  110. normal_layers.append(nn.Sequential(*module))
  111. upsample_layers.append(nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True))
  112. proj_layers.append(nn.Sequential(
  113. nn.Conv2d(dim[i - 1], dim[i], 1, 1),
  114. norm_layer(dim[i]),
  115. nn.GELU()
  116. ))
  117. self.normal_layers = normal_layers
  118. self.upsample_layers = upsample_layers
  119. self.proj_layers = proj_layers
  120. def _forward_stage(self, stage, x):
  121. x = self.proj_layers[stage](x)
  122. x = self.upsample_layers[stage](x)
  123. return self.normal_layers[stage](x)
  124. def forward(self, c3):
  125. x = self._forward_stage(0, c3) # 14
  126. x = self._forward_stage(1, x) # 28
  127. x = self._forward_stage(2, x) # 56
  128. x = self.projback(x)
  129. return x
  130. class SimDecoder(nn.Module):
  131. def __init__(self, in_channel, encoder_stride) -> None:
  132. super().__init__()
  133. self.projback = nn.Sequential(
  134. LayerNorm(in_channel),
  135. nn.Conv2d(
  136. in_channels=in_channel,
  137. out_channels=encoder_stride ** 2 * 3, kernel_size=1),
  138. nn.PixelShuffle(encoder_stride),
  139. )
  140. def forward(self, c3):
  141. return self.projback(c3)
  142. def get_gpu_states(fwd_gpu_devices) -> Tuple[List[int], List[torch.Tensor]]:
  143. # This will not error out if "arg" is a CPU tensor or a non-tensor type because
  144. # the conditionals short-circuit.
  145. fwd_gpu_states = []
  146. for device in fwd_gpu_devices:
  147. with torch.cuda.device(device):
  148. fwd_gpu_states.append(torch.cuda.get_rng_state())
  149. return fwd_gpu_states
  150. def get_gpu_device(*args):
  151. fwd_gpu_devices = list(set(arg.get_device() for arg in args
  152. if isinstance(arg, torch.Tensor) and arg.is_cuda))
  153. return fwd_gpu_devices
  154. def set_device_states(fwd_cpu_state, devices, states) -> None:
  155. torch.set_rng_state(fwd_cpu_state)
  156. for device, state in zip(devices, states):
  157. with torch.cuda.device(device):
  158. torch.cuda.set_rng_state(state)
  159. def detach_and_grad(inputs: Tuple[Any, ...]) -> Tuple[torch.Tensor, ...]:
  160. if isinstance(inputs, tuple):
  161. out = []
  162. for inp in inputs:
  163. if not isinstance(inp, torch.Tensor):
  164. out.append(inp)
  165. continue
  166. x = inp.detach()
  167. x.requires_grad = True
  168. out.append(x)
  169. return tuple(out)
  170. else:
  171. raise RuntimeError(
  172. "Only tuple of tensors is supported. Got Unsupported input type: ", type(inputs).__name__)
  173. def get_cpu_and_gpu_states(gpu_devices):
  174. return torch.get_rng_state(), get_gpu_states(gpu_devices)
  175. class ReverseFunction(torch.autograd.Function):
  176. @staticmethod
  177. def forward(ctx, run_functions, alpha, *args):
  178. l0, l1, l2, l3 = run_functions
  179. alpha0, alpha1, alpha2, alpha3 = alpha
  180. ctx.run_functions = run_functions
  181. ctx.alpha = alpha
  182. ctx.preserve_rng_state = True
  183. ctx.gpu_autocast_kwargs = {"enabled": torch.is_autocast_enabled(),
  184. "dtype": torch.get_autocast_gpu_dtype(),
  185. "cache_enabled": torch.is_autocast_cache_enabled()}
  186. ctx.cpu_autocast_kwargs = {"enabled": torch.is_autocast_cpu_enabled(),
  187. "dtype": torch.get_autocast_cpu_dtype(),
  188. "cache_enabled": torch.is_autocast_cache_enabled()}
  189. assert len(args) == 5
  190. [x, c0, c1, c2, c3] = args
  191. if type(c0) == int:
  192. ctx.first_col = True
  193. else:
  194. ctx.first_col = False
  195. with torch.no_grad():
  196. gpu_devices = get_gpu_device(*args)
  197. ctx.gpu_devices = gpu_devices
  198. ctx.cpu_states_0, ctx.gpu_states_0 = get_cpu_and_gpu_states(gpu_devices)
  199. c0 = l0(x, c1) + c0 * alpha0
  200. ctx.cpu_states_1, ctx.gpu_states_1 = get_cpu_and_gpu_states(gpu_devices)
  201. c1 = l1(c0, c2) + c1 * alpha1
  202. ctx.cpu_states_2, ctx.gpu_states_2 = get_cpu_and_gpu_states(gpu_devices)
  203. c2 = l2(c1, c3) + c2 * alpha2
  204. ctx.cpu_states_3, ctx.gpu_states_3 = get_cpu_and_gpu_states(gpu_devices)
  205. c3 = l3(c2, None) + c3 * alpha3
  206. ctx.save_for_backward(x, c0, c1, c2, c3)
  207. return x, c0, c1, c2, c3
  208. @staticmethod
  209. def backward(ctx, *grad_outputs):
  210. x, c0, c1, c2, c3 = ctx.saved_tensors
  211. l0, l1, l2, l3 = ctx.run_functions
  212. alpha0, alpha1, alpha2, alpha3 = ctx.alpha
  213. gx_right, g0_right, g1_right, g2_right, g3_right = grad_outputs
  214. (x, c0, c1, c2, c3) = detach_and_grad((x, c0, c1, c2, c3))
  215. with torch.enable_grad(), \
  216. torch.random.fork_rng(devices=ctx.gpu_devices, enabled=ctx.preserve_rng_state), \
  217. torch.cuda.amp.autocast(**ctx.gpu_autocast_kwargs), \
  218. torch.cpu.amp.autocast(**ctx.cpu_autocast_kwargs):
  219. g3_up = g3_right
  220. g3_left = g3_up * alpha3 ##shortcut
  221. set_device_states(ctx.cpu_states_3, ctx.gpu_devices, ctx.gpu_states_3)
  222. oup3 = l3(c2, None)
  223. torch.autograd.backward(oup3, g3_up, retain_graph=True)
  224. with torch.no_grad():
  225. c3_left = (1 / alpha3) * (c3 - oup3) ## feature reverse
  226. g2_up = g2_right + c2.grad
  227. g2_left = g2_up * alpha2 ##shortcut
  228. (c3_left,) = detach_and_grad((c3_left,))
  229. set_device_states(ctx.cpu_states_2, ctx.gpu_devices, ctx.gpu_states_2)
  230. oup2 = l2(c1, c3_left)
  231. torch.autograd.backward(oup2, g2_up, retain_graph=True)
  232. c3_left.requires_grad = False
  233. cout3 = c3_left * alpha3 ##alpha3 update
  234. torch.autograd.backward(cout3, g3_up)
  235. with torch.no_grad():
  236. c2_left = (1 / alpha2) * (c2 - oup2) ## feature reverse
  237. g3_left = g3_left + c3_left.grad if c3_left.grad is not None else g3_left
  238. g1_up = g1_right + c1.grad
  239. g1_left = g1_up * alpha1 ##shortcut
  240. (c2_left,) = detach_and_grad((c2_left,))
  241. set_device_states(ctx.cpu_states_1, ctx.gpu_devices, ctx.gpu_states_1)
  242. oup1 = l1(c0, c2_left)
  243. torch.autograd.backward(oup1, g1_up, retain_graph=True)
  244. c2_left.requires_grad = False
  245. cout2 = c2_left * alpha2 ##alpha2 update
  246. torch.autograd.backward(cout2, g2_up)
  247. with torch.no_grad():
  248. c1_left = (1 / alpha1) * (c1 - oup1) ## feature reverse
  249. g0_up = g0_right + c0.grad
  250. g0_left = g0_up * alpha0 ##shortcut
  251. g2_left = g2_left + c2_left.grad if c2_left.grad is not None else g2_left ## Fusion
  252. (c1_left,) = detach_and_grad((c1_left,))
  253. set_device_states(ctx.cpu_states_0, ctx.gpu_devices, ctx.gpu_states_0)
  254. oup0 = l0(x, c1_left)
  255. torch.autograd.backward(oup0, g0_up, retain_graph=True)
  256. c1_left.requires_grad = False
  257. cout1 = c1_left * alpha1 ##alpha1 update
  258. torch.autograd.backward(cout1, g1_up)
  259. with torch.no_grad():
  260. c0_left = (1 / alpha0) * (c0 - oup0) ## feature reverse
  261. gx_up = x.grad ## Fusion
  262. g1_left = g1_left + c1_left.grad if c1_left.grad is not None else g1_left ## Fusion
  263. c0_left.requires_grad = False
  264. cout0 = c0_left * alpha0 ##alpha0 update
  265. torch.autograd.backward(cout0, g0_up)
  266. if ctx.first_col:
  267. return None, None, gx_up, None, None, None, None
  268. else:
  269. return None, None, gx_up, g0_left, g1_left, g2_left, g3_left
  270. class Fusion(nn.Module):
  271. def __init__(self, level, channels, first_col) -> None:
  272. super().__init__()
  273. self.level = level
  274. self.first_col = first_col
  275. self.down = nn.Sequential(
  276. nn.Conv2d(channels[level - 1], channels[level], kernel_size=2, stride=2),
  277. LayerNorm(channels[level], eps=1e-6, data_format="channels_first"),
  278. ) if level in [1, 2, 3] else nn.Identity()
  279. if not first_col:
  280. self.up = UpSampleConvnext(1, channels[level + 1], channels[level]) if level in [0, 1, 2] else nn.Identity()
  281. def forward(self, *args):
  282. c_down, c_up = args
  283. if self.first_col:
  284. x = self.down(c_down)
  285. return x
  286. if self.level == 3:
  287. x = self.down(c_down)
  288. else:
  289. x = self.up(c_up) + self.down(c_down)
  290. return x
  291. class Level(nn.Module):
  292. def __init__(self, level, channels, layers, kernel_size, first_col, dp_rate=0.0) -> None:
  293. super().__init__()
  294. countlayer = sum(layers[:level])
  295. expansion = 4
  296. self.fusion = Fusion(level, channels, first_col)
  297. modules = [ConvNextBlock(channels[level], expansion * channels[level], channels[level], kernel_size=kernel_size,
  298. layer_scale_init_value=1e-6, drop_path=dp_rate[countlayer + i]) for i in
  299. range(layers[level])]
  300. self.blocks = nn.Sequential(*modules)
  301. def forward(self, *args):
  302. x = self.fusion(*args)
  303. x = self.blocks(x)
  304. return x
  305. class SubNet(nn.Module):
  306. def __init__(self, channels, layers, kernel_size, first_col, dp_rates, save_memory) -> None:
  307. super().__init__()
  308. shortcut_scale_init_value = 0.5
  309. self.save_memory = save_memory
  310. self.alpha0 = nn.Parameter(shortcut_scale_init_value * torch.ones((1, channels[0], 1, 1)),
  311. requires_grad=True) if shortcut_scale_init_value > 0 else None
  312. self.alpha1 = nn.Parameter(shortcut_scale_init_value * torch.ones((1, channels[1], 1, 1)),
  313. requires_grad=True) if shortcut_scale_init_value > 0 else None
  314. self.alpha2 = nn.Parameter(shortcut_scale_init_value * torch.ones((1, channels[2], 1, 1)),
  315. requires_grad=True) if shortcut_scale_init_value > 0 else None
  316. self.alpha3 = nn.Parameter(shortcut_scale_init_value * torch.ones((1, channels[3], 1, 1)),
  317. requires_grad=True) if shortcut_scale_init_value > 0 else None
  318. self.level0 = Level(0, channels, layers, kernel_size, first_col, dp_rates)
  319. self.level1 = Level(1, channels, layers, kernel_size, first_col, dp_rates)
  320. self.level2 = Level(2, channels, layers, kernel_size, first_col, dp_rates)
  321. self.level3 = Level(3, channels, layers, kernel_size, first_col, dp_rates)
  322. def _forward_nonreverse(self, *args):
  323. x, c0, c1, c2, c3 = args
  324. c0 = (self.alpha0) * c0 + self.level0(x, c1)
  325. c1 = (self.alpha1) * c1 + self.level1(c0, c2)
  326. c2 = (self.alpha2) * c2 + self.level2(c1, c3)
  327. c3 = (self.alpha3) * c3 + self.level3(c2, None)
  328. return c0, c1, c2, c3
  329. def _forward_reverse(self, *args):
  330. local_funs = [self.level0, self.level1, self.level2, self.level3]
  331. alpha = [self.alpha0, self.alpha1, self.alpha2, self.alpha3]
  332. _, c0, c1, c2, c3 = ReverseFunction.apply(
  333. local_funs, alpha, *args)
  334. return c0, c1, c2, c3
  335. def forward(self, *args):
  336. self._clamp_abs(self.alpha0.data, 1e-3)
  337. self._clamp_abs(self.alpha1.data, 1e-3)
  338. self._clamp_abs(self.alpha2.data, 1e-3)
  339. self._clamp_abs(self.alpha3.data, 1e-3)
  340. if self.save_memory:
  341. return self._forward_reverse(*args)
  342. else:
  343. return self._forward_nonreverse(*args)
  344. def _clamp_abs(self, data, value):
  345. with torch.no_grad():
  346. sign = data.sign()
  347. data.abs_().clamp_(value)
  348. data *= sign
  349. class Classifier(nn.Module):
  350. def __init__(self, in_channels, num_classes):
  351. super().__init__()
  352. self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
  353. self.classifier = nn.Sequential(
  354. nn.LayerNorm(in_channels, eps=1e-6), # final norm layer
  355. nn.Linear(in_channels, num_classes),
  356. )
  357. def forward(self, x):
  358. x = self.avgpool(x)
  359. x = x.view(x.size(0), -1)
  360. x = self.classifier(x)
  361. return x
  362. class FullNet(nn.Module):
  363. def __init__(self, channels=[32, 64, 96, 128], layers=[2, 3, 6, 3], num_subnet=5, kernel_size=3, drop_path=0.0,
  364. save_memory=True, inter_supv=True) -> None:
  365. super().__init__()
  366. self.num_subnet = num_subnet
  367. self.inter_supv = inter_supv
  368. self.channels = channels
  369. self.layers = layers
  370. self.stem = nn.Sequential(
  371. nn.Conv2d(3, channels[0], kernel_size=4, stride=4),
  372. LayerNorm(channels[0], eps=1e-6, data_format="channels_first")
  373. )
  374. dp_rate = [x.item() for x in torch.linspace(0, drop_path, sum(layers))]
  375. for i in range(num_subnet):
  376. first_col = True if i == 0 else False
  377. self.add_module(f'subnet{str(i)}', SubNet(
  378. channels, layers, kernel_size, first_col, dp_rates=dp_rate, save_memory=save_memory))
  379. self.apply(self._init_weights)
  380. self.width_list = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]
  381. def forward(self, x):
  382. c0, c1, c2, c3 = 0, 0, 0, 0
  383. x = self.stem(x)
  384. for i in range(self.num_subnet):
  385. c0, c1, c2, c3 = getattr(self, f'subnet{str(i)}')(x, c0, c1, c2, c3)
  386. return [c0, c1, c2, c3]
  387. def _init_weights(self, module):
  388. if isinstance(module, nn.Conv2d):
  389. trunc_normal_(module.weight, std=.02)
  390. nn.init.constant_(module.bias, 0)
  391. elif isinstance(module, nn.Linear):
  392. trunc_normal_(module.weight, std=.02)
  393. nn.init.constant_(module.bias, 0)
  394. ##-------------------------------------- Tiny -----------------------------------------
  395. def revcol_tiny(save_memory=True, inter_supv=True, drop_path=0.1, kernel_size=3):
  396. channels = [64, 128, 256, 512]
  397. layers = [2, 2, 4, 2]
  398. num_subnet = 4
  399. return FullNet(channels, layers, num_subnet, drop_path=drop_path, save_memory=save_memory, inter_supv=inter_supv,
  400. kernel_size=kernel_size)
  401. ##-------------------------------------- Small -----------------------------------------
  402. def revcol_small(save_memory=True, inter_supv=True, drop_path=0.3, kernel_size=3):
  403. channels = [64, 128, 256, 512]
  404. layers = [2, 2, 4, 2]
  405. num_subnet = 8
  406. return FullNet(channels, layers, num_subnet, drop_path=drop_path, save_memory=save_memory, inter_supv=inter_supv,
  407. kernel_size=kernel_size)
  408. ##-------------------------------------- Base -----------------------------------------
  409. def revcol_base(save_memory=True, inter_supv=True, drop_path=0.4, kernel_size=3, head_init_scale=None):
  410. channels = [72, 144, 288, 576]
  411. layers = [1, 1, 3, 2]
  412. num_subnet = 16
  413. return FullNet(channels, layers, num_subnet, drop_path=drop_path, save_memory=save_memory, inter_supv=inter_supv,
  414. kernel_size=kernel_size)
  415. ##-------------------------------------- Large -----------------------------------------
  416. def revcol_large(save_memory=True, inter_supv=True, drop_path=0.5, kernel_size=3, head_init_scale=None):
  417. channels = [128, 256, 512, 1024]
  418. layers = [1, 2, 6, 2]
  419. num_subnet = 8
  420. return FullNet(channels, layers, num_subnet, drop_path=drop_path, save_memory=save_memory, inter_supv=inter_supv,
  421. kernel_size=kernel_size)
  422. ##--------------------------------------Extra-Large -----------------------------------------
  423. def revcol_xlarge(save_memory=True, inter_supv=True, drop_path=0.5, kernel_size=3, head_init_scale=None):
  424. channels = [224, 448, 896, 1792]
  425. layers = [1, 2, 6, 2]
  426. num_subnet = 8
  427. return FullNet(channels, layers, num_subnet, drop_path=drop_path, save_memory=save_memory, inter_supv=inter_supv,
  428. kernel_size=kernel_size)
  429. # model = revcol_xlarge(True)
  430. # # 示例输入
  431. # input = torch.randn(64, 3, 224, 224)
  432. # output = model(input)
  433. #
  434. # print(len(output))#torch.Size([3, 64, 224, 224])

四、手把手教你添加RevColV1机制

这个主干的网络结构添加起来算是所有的改进机制里最麻烦的了,因为有一些网略结构可以用yaml文件搭建出来,有一些网络结构其中的一些细节根本没有办法用yaml文件去搭建,用yaml文件去搭建会损失一些细节部分(而且一个网络结构设计很多细节的结构修改方式都不一样,一个一个去修改大家难免会出错),所以这里让网络直接返回整个网络,然后修改部分 yolo代码以后就都以这种形式添加了,以后我提出的网络模型基本上都会通过这种方式修改,我也会进行一些模型细节改进。创新出新的网络结构大家直接拿来用就可以的。 下面开始添加教程->

(同时每一个后面都有代码,大家拿来复制粘贴替换即可,但是要看好了不要复制粘贴替换多了)


4.1 修改一

我们复制网络结构代码到“ ultralytics /nn”目录下创建一个py文件复制粘贴进去 ,我这里起的名字是RevColV1。


4.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。


4.3 修改三

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四

添加如下两行代码!!!


4.5 修改五

找到七百多行大概把具体看图片,按照图片来修改就行,添加红框内的部分,注意没有()只是 函数 名,我这里只添加了部分的版本,大家有兴趣这个RevColV1还有更多的版本可以添加,看我给的代码函数头即可。

  1. elif m in {自行添加对应的模型即可,下面都是一样的}:
  2. m = m()
  3. c2 = m.width_list # 返回通道列表
  4. backbone = True


4.6 修改六

下面的两个红框内都是需要改动的。

  1. if isinstance(c2, list):
  2. m_ = m
  3. m_.backbone = True
  4. else:
  5. m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) # module
  6. t = str(m)[8:-2].replace('__main__.', '') # module type
  7. m.np = sum(x.numel() for x in m_.parameters()) # number params
  8. m_.i, m_.f, m_.type = i + 4 if backbone else i, f, t # attach index, 'from' index, type


4.7 修改七

如下的也需要修改,全部按照我的来。

代码如下把原先的代码替换了即可。

  1. if verbose:
  2. LOGGER.info(f'{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f} {t:<45}{str(args):<30}') # print
  3. save.extend(x % (i + 4 if backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1) # append to savelist
  4. layers.append(m_)
  5. if i == 0:
  6. ch = []
  7. if isinstance(c2, list):
  8. ch.extend(c2)
  9. if len(c2) != 5:
  10. ch.insert(0, 0)
  11. else:
  12. ch.append(c2)


4.8 修改八

修改七和前面的都不太一样,需要修改前向传播中的一个部分, 已经离开了parse_model方法了。

可以在图片中开代码行数,没有离开task.py文件都是同一个文件。 同时这个部分有好几个前向传播都很相似,大家不要看错了, 是70多行左右的!!!,同时我后面提供了代码,大家直接复制粘贴即可,有时间我针对这里会出一个视频。

​​

代码如下->

  1. def _predict_once(self, x, profile=False, visualize=False, embed=None):
  2. """
  3. Perform a forward pass through the network.
  4. Args:
  5. x (torch.Tensor): The input tensor to the model.
  6. profile (bool): Print the computation time of each layer if True, defaults to False.
  7. visualize (bool): Save the feature maps of the model if True, defaults to False.
  8. embed (list, optional): A list of feature vectors/embeddings to return.
  9. Returns:
  10. (torch.Tensor): The last output of the model.
  11. """
  12. y, dt, embeddings = [], [], [] # outputs
  13. for m in self.model:
  14. if m.f != -1: # if not from previous layer
  15. x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f] # from earlier layers
  16. if profile:
  17. self._profile_one_layer(m, x, dt)
  18. if hasattr(m, 'backbone'):
  19. x = m(x)
  20. if len(x) != 5: # 0 - 5
  21. x.insert(0, None)
  22. for index, i in enumerate(x):
  23. if index in self.save:
  24. y.append(i)
  25. else:
  26. y.append(None)
  27. x = x[-1] # 最后一个输出传给下一层
  28. else:
  29. x = m(x) # run
  30. y.append(x if m.i in self.save else None) # save output
  31. if visualize:
  32. feature_visualization(x, m.type, m.i, save_dir=visualize)
  33. if embed and m.i in embed:
  34. embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1)) # flatten
  35. if m.i == max(embed):
  36. return torch.unbind(torch.cat(embeddings, 1), dim=0)
  37. return x

到这里就完成了修改部分,但是这里面细节很多,大家千万要注意不要替换多余的代码,导致报错,也不要拉下任何一部,都会导致运行失败,而且报错很难排查!!!很难排查!!!


4.9 修改九

我们找到如下文件'ultralytics/utils/torch_utils.py'按照如下的图片进行修改,否则容易打印不出来计算量。


五、RevColV1的yaml文件

复制如下yaml文件进行运行!!!

此版本训练信息:YOLO11-RevColV1 summary: 632 layers, 31,831,739 parameters, 31,831,723 gradients, 77.9 GFLOPs

# 本文建议改进机制模型为YOLOv11-l的读者使用.

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # 共四个版本 "revcol_tiny, revcol_base, revcol_small, revcol_large, revcol_xlarge"
  13. # YOLO11n backbone
  14. backbone:
  15. # [from, repeats, module, args]
  16. - [-1, 1, revcol_tiny, []] # 0-4 P1/2
  17. - [-1, 1, SPPF, [1024, 5]] # 5
  18. - [-1, 2, C2PSA, [1024]] # 6
  19. # YOLO11n head
  20. head:
  21. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  22. - [[-1, 3], 1, Concat, [1]] # cat backbone P4
  23. - [-1, 2, C3k2, [512, False]] # 9
  24. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  25. - [[-1, 2], 1, Concat, [1]] # cat backbone P3
  26. - [-1, 2, C3k2, [256, False]] # 12 (P3/8-small)
  27. - [-1, 1, Conv, [256, 3, 2]]
  28. - [[-1, 9], 1, Concat, [1]] # cat head P4
  29. - [-1, 2, C3k2, [512, False]] # 15 (P4/16-medium)
  30. - [-1, 1, Conv, [512, 3, 2]]
  31. - [[-1, 6], 1, Concat, [1]] # cat head P5
  32. - [-1, 2, C3k2, [1024, True]] # 18 (P5/32-large)
  33. - [[12, 15, 18], 1, Detect, [nc]] # Detect(P3, P4, P5)


六、成功运行记录

下面是成功运行的截图,已经完成了有1个epochs的训练,图片太大截不全第2个epochs了。


七、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充, 目前本专栏免费阅读(暂时,大家尽早关注不迷路~) 如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~