一、本文介绍
本文给大家带来的改进机制是利用 2024-TPAMI 最新机制 FreqFusion二次创新BiFPN , 《Frequency-aware Feature Fusion for Dense Image Prediction》这篇文章的主要贡献是提出了一种新的特征融合方法(FreqFusion),旨在解决密集图像预测任务中的类别内不一致性和边界位移问题。本文将其和 BiFPN 进行结合实现二次创新BiFPN机制, 相比于原始的YOLOv11本文的内容可以达到一定的轻量化,本文的内容在作者的多类别数据集上实现了涨点。
二、原理介绍
官方论文地址: 官方论文地址点击此处即可跳转
官方代码地址: 官方代码地址点击此处即可跳转
《Frequency-aware Feature Fusion for Dense Image Prediction》这篇文章的主要贡献是提出了一种新的特征融合方法,旨在解决密集图像预测任务中的类别内不一致性和边界位移问题。文章中的核心概念较多,以下是简要的总结和理解:
问题定义:
密集图像预测任务(例如语义分割、目标检测和实例分割)依赖于高精度的类别信息和空间边界。但传统的特征融合方法在类别内特征一致性和边界保留上表现不佳,容易导致类别内不一致(类别内部不同部分特征差异大)和边界模糊。解决方案——FreqFusion:
文章提出了一种**频率感知特征融合(FreqFusion) ,它通过三个主要组件来提升融合效果:
1. 自适应低通滤波器(ALPF) 生成器 :该模块通过生成空间可变的低通滤波器,平滑高层特征,减少类别内不一致。
2. 偏移生成器:通过重新采样,将类别一致性较高的特征替换掉不一致的特征,进一步增强边界的清晰度。
3. 自适应高通滤波器(AHPF)生成器:用于增强在下采样过程中丢失的高频信息,提升边界细节。方法优势:
提升类别内一致性:通过ALPF组件减少了对象内部特征的波动,提升了类别内的相似度。
边界优化:通过偏移生成器和AHPF组件修正了对象边界,使得边界更加清晰。
广泛的适用性:该方法在多个任务上验证了其有效性,如语义分割、目标检测和实例分割。实验结果:
在语义分割任务中,FreqFusion相比现有方法在多个数据集(如Cityscapes和ADE20K)上有显著的提升,例如在ADE20K上比现有最优方法提升了2.8 mIoU。
在目标检测任务中,使用Faster R-CNN的FreqFusion版本在MS COCO数据集 上提升了1.8 AP。
实例分割和全景分割任务中,也实现了显著的 性能 提升。总结:
FreqFusion通过结合自适应低通和高通滤波器,解决了标准特征融合中的类别内不一致性和边界模糊问题,在多个 计算机视觉 任务上提升了预测性能。
三、核心代码
核心代码使用方式看章节四!
- # TPAMI 2024:Frequency-aware Feature Fusion for Dense Image Prediction
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- from mmcv.ops.carafe import normal_init, xavier_init, carafe
- import warnings
- import numpy as np
- __all__ = ['FreqFusion']
- def normal_init(module, mean=0, std=1, bias=0):
- if hasattr(module, 'weight') and module.weight is not None:
- nn.init.normal_(module.weight, mean, std)
- if hasattr(module, 'bias') and module.bias is not None:
- nn.init.constant_(module.bias, bias)
- def constant_init(module, val, bias=0):
- if hasattr(module, 'weight') and module.weight is not None:
- nn.init.constant_(module.weight, val)
- if hasattr(module, 'bias') and module.bias is not None:
- nn.init.constant_(module.bias, bias)
- def resize(input,
- size=None,
- scale_factor=None,
- mode='nearest',
- align_corners=None,
- warning=True):
- if warning:
- if size is not None and align_corners:
- input_h, input_w = tuple(int(x) for x in input.shape[2:])
- output_h, output_w = tuple(int(x) for x in size)
- if output_h > input_h or output_w > input_w:
- if ((output_h > 1 and output_w > 1 and input_h > 1
- and input_w > 1) and (output_h - 1) % (input_h - 1)
- and (output_w - 1) % (input_w - 1)):
- warnings.warn(
- f'When align_corners={align_corners}, '
- 'the output would more aligned if '
- f'input size {(input_h, input_w)} is `x+1` and '
- f'out size {(output_h, output_w)} is `nx+1`')
- return F.interpolate(input, size, scale_factor, mode, align_corners)
- def hamming2D(M, N):
- """
- 生成二维Hamming窗
- 参数:
- - M:窗口的行数
- - N:窗口的列数
- 返回:
- - 二维Hamming窗
- """
- # 生成水平和垂直方向上的Hamming窗
- # hamming_x = np.blackman(M)
- # hamming_x = np.kaiser(M)
- hamming_x = np.hamming(M)
- hamming_y = np.hamming(N)
- # 通过外积生成二维Hamming窗
- hamming_2d = np.outer(hamming_x, hamming_y)
- return hamming_2d
- class FreqFusion(nn.Module):
- def __init__(self,
- channels,
- scale_factor=1,
- lowpass_kernel=5,
- highpass_kernel=3,
- up_group=1,
- encoder_kernel=3,
- encoder_dilation=1,
- compressed_channels=64,
- align_corners=False,
- upsample_mode='nearest',
- feature_resample=False, # use offset generator or not
- feature_resample_group=4,
- comp_feat_upsample=True, # use ALPF & AHPF for init upsampling
- use_high_pass=True,
- use_low_pass=True,
- hr_residual=True,
- semi_conv=True,
- hamming_window=True, # for regularization, do not matter really
- feature_resample_norm=True,
- **kwargs):
- super().__init__()
- hr_channels, lr_channels = channels
- self.scale_factor = scale_factor
- self.lowpass_kernel = lowpass_kernel
- self.highpass_kernel = highpass_kernel
- self.up_group = up_group
- self.encoder_kernel = encoder_kernel
- self.encoder_dilation = encoder_dilation
- self.compressed_channels = compressed_channels
- self.hr_channel_compressor = nn.Conv2d(hr_channels, self.compressed_channels,1)
- self.lr_channel_compressor = nn.Conv2d(lr_channels, self.compressed_channels,1)
- self.content_encoder = nn.Conv2d( # ALPF generator
- self.compressed_channels,
- lowpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor,
- self.encoder_kernel,
- padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
- dilation=self.encoder_dilation,
- groups=1)
- self.align_corners = align_corners
- self.upsample_mode = upsample_mode
- self.hr_residual = hr_residual
- self.use_high_pass = use_high_pass
- self.use_low_pass = use_low_pass
- self.semi_conv = semi_conv
- self.feature_resample = feature_resample
- self.comp_feat_upsample = comp_feat_upsample
- if self.feature_resample:
- self.dysampler = LocalSimGuidedSampler(in_channels=compressed_channels, scale=2, style='lp', groups=feature_resample_group, use_direct_scale=True, kernel_size=encoder_kernel, norm=feature_resample_norm)
- if self.use_high_pass:
- self.content_encoder2 = nn.Conv2d( # AHPF generator
- self.compressed_channels,
- highpass_kernel ** 2 * self.up_group * self.scale_factor * self.scale_factor,
- self.encoder_kernel,
- padding=int((self.encoder_kernel - 1) * self.encoder_dilation / 2),
- dilation=self.encoder_dilation,
- groups=1)
- self.hamming_window = hamming_window
- lowpass_pad=0
- highpass_pad=0
- if self.hamming_window:
- self.register_buffer('hamming_lowpass', torch.FloatTensor(hamming2D(lowpass_kernel + 2 * lowpass_pad, lowpass_kernel + 2 * lowpass_pad))[None, None,])
- self.register_buffer('hamming_highpass', torch.FloatTensor(hamming2D(highpass_kernel + 2 * highpass_pad, highpass_kernel + 2 * highpass_pad))[None, None,])
- else:
- self.register_buffer('hamming_lowpass', torch.FloatTensor([1.0]))
- self.register_buffer('hamming_highpass', torch.FloatTensor([1.0]))
- self.init_weights()
- def init_weights(self):
- for m in self.modules():
- # print(m)
- if isinstance(m, nn.Conv2d):
- xavier_init(m, distribution='uniform')
- normal_init(self.content_encoder, std=0.001)
- if self.use_high_pass:
- normal_init(self.content_encoder2, std=0.001)
- def kernel_normalizer(self, mask, kernel, scale_factor=None, hamming=1):
- if scale_factor is not None:
- mask = F.pixel_shuffle(mask, self.scale_factor)
- n, mask_c, h, w = mask.size()
- mask_channel = int(mask_c / float(kernel**2))
- # mask = mask.view(n, mask_channel, -1, h, w)
- # mask = F.softmax(mask, dim=2, dtype=mask.dtype)
- # mask = mask.view(n, mask_c, h, w).contiguous()
- mask = mask.view(n, mask_channel, -1, h, w)
- mask = F.softmax(mask, dim=2, dtype=mask.dtype)
- mask = mask.view(n, mask_channel, kernel, kernel, h, w)
- mask = mask.permute(0, 1, 4, 5, 2, 3).view(n, -1, kernel, kernel)
- # mask = F.pad(mask, pad=[padding] * 4, mode=self.padding_mode) # kernel + 2 * padding
- mask = mask * hamming
- mask /= mask.sum(dim=(-1, -2), keepdims=True)
- # print(hamming)
- # print(mask.shape)
- mask = mask.view(n, mask_channel, h, w, -1)
- mask = mask.permute(0, 1, 4, 2, 3).view(n, -1, h, w).contiguous()
- return mask
- def forward(self, x):
- hr_feat, lr_feat = x
- compressed_hr_feat = self.hr_channel_compressor(hr_feat)
- compressed_lr_feat = self.lr_channel_compressor(lr_feat)
- if self.semi_conv:
- if self.comp_feat_upsample:
- if self.use_high_pass:
- mask_hr_hr_feat = self.content_encoder2(compressed_hr_feat)
- mask_hr_init = self.kernel_normalizer(mask_hr_hr_feat, self.highpass_kernel, hamming=self.hamming_highpass)
- compressed_hr_feat = compressed_hr_feat + compressed_hr_feat - carafe(compressed_hr_feat, mask_hr_init, self.highpass_kernel, self.up_group, 1)
- mask_lr_hr_feat = self.content_encoder(compressed_hr_feat)
- mask_lr_init = self.kernel_normalizer(mask_lr_hr_feat, self.lowpass_kernel, hamming=self.hamming_lowpass)
- mask_lr_lr_feat_lr = self.content_encoder(compressed_lr_feat)
- mask_lr_lr_feat = F.interpolate(
- carafe(mask_lr_lr_feat_lr, mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest')
- mask_lr = mask_lr_hr_feat + mask_lr_lr_feat
- mask_lr_init = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass)
- mask_hr_lr_feat = F.interpolate(
- carafe(self.content_encoder2(compressed_lr_feat), mask_lr_init, self.lowpass_kernel, self.up_group, 2), size=compressed_hr_feat.shape[-2:], mode='nearest')
- mask_hr = mask_hr_hr_feat + mask_hr_lr_feat
- else: raise NotImplementedError
- else:
- mask_lr = self.content_encoder(compressed_hr_feat) + F.interpolate(self.content_encoder(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest')
- if self.use_high_pass:
- mask_hr = self.content_encoder2(compressed_hr_feat) + F.interpolate(self.content_encoder2(compressed_lr_feat), size=compressed_hr_feat.shape[-2:], mode='nearest')
- else:
- compressed_x = F.interpolate(compressed_lr_feat, size=compressed_hr_feat.shape[-2:], mode='nearest') + compressed_hr_feat
- mask_lr = self.content_encoder(compressed_x)
- if self.use_high_pass:
- mask_hr = self.content_encoder2(compressed_x)
- mask_lr = self.kernel_normalizer(mask_lr, self.lowpass_kernel, hamming=self.hamming_lowpass)
- if self.semi_conv:
- lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 2)
- else:
- lr_feat = resize(
- input=lr_feat,
- size=hr_feat.shape[2:],
- mode=self.upsample_mode,
- align_corners=None if self.upsample_mode == 'nearest' else self.align_corners)
- lr_feat = carafe(lr_feat, mask_lr, self.lowpass_kernel, self.up_group, 1)
- if self.use_high_pass:
- mask_hr = self.kernel_normalizer(mask_hr, self.highpass_kernel, hamming=self.hamming_highpass)
- hr_feat_hf = hr_feat - carafe(hr_feat, mask_hr, self.highpass_kernel, self.up_group, 1)
- if self.hr_residual:
- # print('using hr_residual')
- hr_feat = hr_feat_hf + hr_feat
- else:
- hr_feat = hr_feat_hf
- if self.feature_resample:
- # print(lr_feat.shape)
- lr_feat = self.dysampler(hr_x=compressed_hr_feat,
- lr_x=compressed_lr_feat, feat2sample=lr_feat)
- return hr_feat + lr_feat
- class LocalSimGuidedSampler(nn.Module):
- """
- offset generator in FreqFusion
- """
- def __init__(self, in_channels, scale=2, style='lp', groups=4, use_direct_scale=True, kernel_size=1, local_window=3, sim_type='cos', norm=True, direction_feat='sim_concat'):
- super().__init__()
- assert scale==2
- assert style=='lp'
- self.scale = scale
- self.style = style
- self.groups = groups
- self.local_window = local_window
- self.sim_type = sim_type
- self.direction_feat = direction_feat
- if style == 'pl':
- assert in_channels >= scale ** 2 and in_channels % scale ** 2 == 0
- assert in_channels >= groups and in_channels % groups == 0
- if style == 'pl':
- in_channels = in_channels // scale ** 2
- out_channels = 2 * groups
- else:
- out_channels = 2 * groups * scale ** 2
- if self.direction_feat == 'sim':
- self.offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- elif self.direction_feat == 'sim_concat':
- self.offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- else: raise NotImplementedError
- normal_init(self.offset, std=0.001)
- if use_direct_scale:
- if self.direction_feat == 'sim':
- self.direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- elif self.direction_feat == 'sim_concat':
- self.direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- else: raise NotImplementedError
- constant_init(self.direct_scale, val=0.)
- out_channels = 2 * groups
- if self.direction_feat == 'sim':
- self.hr_offset = nn.Conv2d(local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- elif self.direction_feat == 'sim_concat':
- self.hr_offset = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- else: raise NotImplementedError
- normal_init(self.hr_offset, std=0.001)
- if use_direct_scale:
- if self.direction_feat == 'sim':
- self.hr_direct_scale = nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- elif self.direction_feat == 'sim_concat':
- self.hr_direct_scale = nn.Conv2d(in_channels + local_window**2 - 1, out_channels, kernel_size=kernel_size, padding=kernel_size//2)
- else: raise NotImplementedError
- constant_init(self.hr_direct_scale, val=0.)
- self.norm = norm
- if self.norm:
- self.norm_hr = nn.GroupNorm(in_channels // 8, in_channels)
- self.norm_lr = nn.GroupNorm(in_channels // 8, in_channels)
- else:
- self.norm_hr = nn.Identity()
- self.norm_lr = nn.Identity()
- self.register_buffer('init_pos', self._init_pos())
- def _init_pos(self):
- h = torch.arange((-self.scale + 1) / 2, (self.scale - 1) / 2 + 1) / self.scale
- return torch.stack(torch.meshgrid([h, h])).transpose(1, 2).repeat(1, self.groups, 1).reshape(1, -1, 1, 1)
- def sample(self, x, offset, scale=None):
- if scale is None: scale = self.scale
- B, _, H, W = offset.shape
- offset = offset.view(B, 2, -1, H, W)
- coords_h = torch.arange(H) + 0.5
- coords_w = torch.arange(W) + 0.5
- coords = torch.stack(torch.meshgrid([coords_w, coords_h])
- ).transpose(1, 2).unsqueeze(1).unsqueeze(0).type(x.dtype).to(x.device)
- normalizer = torch.tensor([W, H], dtype=x.dtype, device=x.device).view(1, 2, 1, 1, 1)
- coords = 2 * (coords + offset) / normalizer - 1
- coords = F.pixel_shuffle(coords.view(B, -1, H, W), scale).view(
- B, 2, -1, scale * H, scale * W).permute(0, 2, 3, 4, 1).contiguous().flatten(0, 1)
- return F.grid_sample(x.reshape(B * self.groups, -1, x.size(-2), x.size(-1)), coords, mode='bilinear',
- align_corners=False, padding_mode="border").view(B, -1, scale * H, scale * W)
- def forward(self, hr_x, lr_x, feat2sample):
- hr_x = self.norm_hr(hr_x)
- lr_x = self.norm_lr(lr_x)
- if self.direction_feat == 'sim':
- hr_sim = compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')
- lr_sim = compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')
- elif self.direction_feat == 'sim_concat':
- hr_sim = torch.cat([hr_x, compute_similarity(hr_x, self.local_window, dilation=2, sim='cos')], dim=1)
- lr_sim = torch.cat([lr_x, compute_similarity(lr_x, self.local_window, dilation=2, sim='cos')], dim=1)
- hr_x, lr_x = hr_sim, lr_sim
- # offset = self.get_offset(hr_x, lr_x)
- offset = self.get_offset_lp(hr_x, lr_x, hr_sim, lr_sim)
- return self.sample(feat2sample, offset)
- # def get_offset_lp(self, hr_x, lr_x):
- def get_offset_lp(self, hr_x, lr_x, hr_sim, lr_sim):
- if hasattr(self, 'direct_scale'):
- # offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos
- offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_x) + F.pixel_unshuffle(self.hr_direct_scale(hr_x), self.scale)).sigmoid() + self.init_pos
- # offset = (self.offset(lr_sim) + F.pixel_unshuffle(self.hr_offset(hr_sim), self.scale)) * (self.direct_scale(lr_sim) + F.pixel_unshuffle(self.hr_direct_scale(hr_sim), self.scale)).sigmoid() + self.init_pos
- else:
- offset = (self.offset(lr_x) + F.pixel_unshuffle(self.hr_offset(hr_x), self.scale)) * 0.25 + self.init_pos
- return offset
- def get_offset(self, hr_x, lr_x):
- if self.style == 'pl':
- raise NotImplementedError
- return self.get_offset_lp(hr_x, lr_x)
- def compute_similarity(input_tensor, k=3, dilation=1, sim='cos'):
- """
- 计算输入张量中每一点与周围KxK范围内的点的余弦相似度。
- 参数:
- - input_tensor: 输入张量,形状为[B, C, H, W]
- - k: 范围大小,表示周围KxK范围内的点
- 返回:
- - 输出张量,形状为[B, KxK-1, H, W]
- """
- B, C, H, W = input_tensor.shape
- # 使用零填充来处理边界情况
- # padded_input = F.pad(input_tensor, (k // 2, k // 2, k // 2, k // 2), mode='constant', value=0)
- # 展平输入张量中每个点及其周围KxK范围内的点
- unfold_tensor = F.unfold(input_tensor, k, padding=(k // 2) * dilation, dilation=dilation) # B, CxKxK, HW
- # print(unfold_tensor.shape)
- unfold_tensor = unfold_tensor.reshape(B, C, k**2, H, W)
- # 计算余弦相似度
- if sim == 'cos':
- similarity = F.cosine_similarity(unfold_tensor[:, :, k * k // 2:k * k // 2 + 1], unfold_tensor[:, :, :], dim=1)
- elif sim == 'dot':
- similarity = unfold_tensor[:, :, k * k // 2:k * k // 2 + 1] * unfold_tensor[:, :, :]
- similarity = similarity.sum(dim=1)
- else:
- raise NotImplementedError
- # 移除中心点的余弦相似度,得到[KxK-1]的结果
- similarity = torch.cat((similarity[:, :k * k // 2], similarity[:, k * k // 2 + 1:]), dim=1)
- # 将结果重塑回[B, KxK-1, H, W]的形状
- similarity = similarity.view(B, k * k - 1, H, W)
- return similarity
四、添加方法
4.1 修改一
第一还是建立文件,我们找到如下 ultralytics /nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹( 用群内的文件的话已经有了无需新建) !然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。
4.2 修改二
第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。
4.3 修改三
第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可) !
4.4 修改四
按照我的添加在parse_model里添加即可。
- elif m in {FreqFusion}:
- c2 = ch[f[0]]
- args = [[ch[x] for x in f], *args]
4.5 修改五
第五步我门中到如下文件'ultralytics/nn/tasks.py'进行修改,按照红框的位置进行定位,用我给的代码进行替换红框中的代码.
- try:
- m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward on CPU
- except RuntimeError:
- try:
- self.model.to(torch.device('cuda'))
- m.stride = torch.tensor([s / x.shape[-2] for x in _forward(
- torch.zeros(1, ch, s, s).to(torch.device('cuda')))]) # forward on CUDA
- except RuntimeError as error:
- raise error
到此就修改完成了,大家可以复制下面的yaml文件运行。
五、正式训练
5.1 yaml文件
训练信息:YOLO11n-FreqFusion-BiFPN summary: 356 layers, 2,441,503 parameters, 2,441,487 gradients, 6.9 GFLOPs
注意:本文的机制需要关闭AMP训练否则会报错.
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
- s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
- m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
- l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
- x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
- # YOLO11n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 2, C3k2, [256, False, 0.25]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 2, C3k2, [512, False, 0.25]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 2, C3k2, [512, True]]
- - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- - [-1, 2, C3k2, [1024, True]]
- - [-1, 1, SPPF, [1024, 5]] # 9
- - [-1, 2, C2PSA, [1024]] # 10
- # YOLO11n head
- head:
- - [4, 1, Conv, [256]] # 11-P3/8
- - [6, 1, Conv, [256]] # 12-P4/16
- - [10, 1, Conv, [256]] # 13-P5/32
- - [[12, -1], 1, FreqFusion, []] # 14
- - [-1, 2, C3k2, [256, False]] # 15-P4/16
- - [[11, -1], 1, FreqFusion, []] # 16
- - [-1, 2, C3k2, [256, False]] # 17-P3/8
- - [1, 1, Conv, [256, 3, 2]] # 18 P2->P3
- - [[-1, 11, 17], 1, Bi_FPN, []] # 19
- - [-1, 2, C3k2, [256, False]] # 20-P3/8
- - [-1, 1, Conv, [256, 3, 2]] # 21 P3->P4
- - [[-1, 12, 15], 1, Bi_FPN, []] # 22
- - [-1, 2, C3k2, [512, False]] # 23-P4/16
- - [-1, 1, Conv, [256, 3, 2]] # 24 P4->P5
- - [[-1, 13], 1, Bi_FPN, []] # 25
- - [-1, 2, C3k2, [1024, True]] # 26-P5/32
- - [[20, 23, 26], 1, Detect, [nc]] # Detect(P3, P4, P5)
5.2 训练代码
大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。
- import warnings
- warnings.filterwarnings('ignore')
- from ultralytics import YOLO
- if __name__ == '__main__':
- model = YOLO('yolov8-MLLA.yaml')
- # 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,
- # 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!
- # model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
- model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",
- # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
- cache=False,
- imgsz=640,
- epochs=150,
- single_cls=False, # 是否是单类别检测
- batch=16,
- close_mosaic=0,
- workers=0,
- device='0',
- optimizer='SGD', # using SGD
- # resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址
- amp=False, # 如果出现训练损失为Nan可以关闭amp
- project='runs/train',
- name='exp',
- )
5.3 训练过程截图
五、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~