学习资源站

YOLOv11改进-细节创新篇-iAFF迭代注意力特征融合改进C3k2助力yolov11有效涨点

一、本文介绍

本文给大家带来的最新改进机制是 iAFF(迭代注意力特征融合) ,其主要思想是通过改善特征融合过程来提高检测精度。传统的 特征融合方法 如加法或串联简单,未考虑到特定对象的融合适用性。iAFF通过引入多尺度通道注意力模块 (我个人觉得这个改进机制就算融合了注意力机制的求和操作) ,更好地整合不同尺度和语义不一致的特征。 该方法属于细节上的改进 并不影响任何其它的模块,非常适合大家进行融合改进,单独使用也是有一定的涨点效果。

欢迎大家订阅我的专栏一起学习YOLO!


二、iAFF的基本框架原理

​​

官方论文地址: 官方论文地址点击即可跳转

官方代码地址: 官方代码地址点击即可跳转

​​


iAFF的主要思想在于通过更精细的注意力机制来改善特征融合,从而增强 卷积神经网络 。它不仅处理了由于尺度和语义不一致而引起的特征融合问题,还引入了 多尺度 通道注意力模块,提供了一种统一且通用的特征融合方案。此外,iAFF通过迭代注意力特征融合来解决特征图初始整合可能成为的瓶颈。这种方法使得 模型 即使在层数或参数较少的情况下,也能取得到较好的效果。

iAFF的创新点主要包括:

1. 注意力特征融合: 提出了一种新的特征融合方式,利用注意力机制来改善传统的简单特征融合方法(如加和或串联)。

2. 多尺度通道注意力模块: 解决了在不同尺度上融合特征时出现的问题,特别是语义和尺度不一致的特征融合问题。

3. 迭代注意力特征融合(iAFF): 通过迭代地应用注意力机制来改善特征图的初步整合,克服了初步整合可能成为性能瓶颈的问题。

​​

这张图片是关于所提出的AFF(注意力特征融合)和iAFF(迭代注意力特征融合)的示意图。图中展示了两种结构:

(a) AFF: 展示了一个通过多尺度通道 注意力模块 (MS-CAM)来融合不同特征的基本框架。特征图X和Y通过MS-CAM和其他操作融合,产生输出Z。

(b) iAFF: 与AFF类似,但添加了迭代结构。在这里,输出Z回馈到输入,与X和Y一起再次经过MS-CAM和融合操作,以进一步细化特征融合过程。

(这两种方法都是文章中提出的我仅使用了iAFF也就是更复杂的版本,大家对于AFF有兴趣的可以按照我的该法进行相似添加即可)


三、iAFF的核心代码

使用方式看章节四!

  1. import torch
  2. import torch.nn as nn
  3. __all__ = ['C3k2_iAFF']
  4. def autopad(k, p=None, d=1): # kernel, padding, dilation
  5. """Pad to 'same' shape outputs."""
  6. if d > 1:
  7. k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
  8. if p is None:
  9. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  10. return p
  11. class Conv(nn.Module):
  12. """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
  13. default_act = nn.SiLU() # default activation
  14. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
  15. """Initialize Conv layer with given arguments including activation."""
  16. super().__init__()
  17. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
  18. self.bn = nn.BatchNorm2d(c2)
  19. self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
  20. def forward(self, x):
  21. """Apply convolution, batch normalization and activation to input tensor."""
  22. return self.act(self.bn(self.conv(x)))
  23. def forward_fuse(self, x):
  24. """Perform transposed convolution of 2D data."""
  25. return self.act(self.conv(x))
  26. class iAFF(nn.Module):
  27. '''
  28. 多特征融合 iAFF
  29. '''
  30. def __init__(self, channels=64, r=2):
  31. super(iAFF, self).__init__()
  32. inter_channels = int(channels // r)
  33. # 本地注意力
  34. self.local_att = nn.Sequential(
  35. nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
  36. nn.BatchNorm2d(inter_channels),
  37. nn.ReLU(inplace=True),
  38. nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
  39. nn.BatchNorm2d(channels),
  40. )
  41. # 全局注意力
  42. self.global_att = nn.Sequential(
  43. nn.AdaptiveAvgPool2d(1),
  44. nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
  45. nn.ReLU(inplace=True),
  46. nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
  47. )
  48. # 第二次本地注意力
  49. self.local_att2 = nn.Sequential(
  50. nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
  51. nn.BatchNorm2d(inter_channels),
  52. nn.ReLU(inplace=True),
  53. nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
  54. nn.BatchNorm2d(channels),
  55. )
  56. # 第二次全局注意力
  57. self.global_att2 = nn.Sequential(
  58. nn.AdaptiveAvgPool2d(1),
  59. nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
  60. nn.BatchNorm2d(inter_channels),
  61. nn.ReLU(inplace=True),
  62. nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
  63. nn.BatchNorm2d(channels),
  64. )
  65. self.sigmoid = nn.Sigmoid()
  66. def forward(self, x, residual):
  67. xa = x + residual
  68. xl = self.local_att(xa)
  69. xg = self.global_att(xa)
  70. xlg = xl + xg
  71. wei = self.sigmoid(xlg)
  72. xi = x * wei + residual * (1 - wei)
  73. xl2 = self.local_att2(xi)
  74. xg2 = self.global_att(xi)
  75. xlg2 = xl2 + xg2
  76. wei2 = self.sigmoid(xlg2)
  77. xo = x * wei2 + residual * (1 - wei2)
  78. return xo
  79. class AFF(nn.Module):
  80. '''
  81. 多特征融合 AFF
  82. '''
  83. def __init__(self, channels=64, r=4):
  84. super(AFF, self).__init__()
  85. inter_channels = int(channels // r)
  86. self.local_att = nn.Sequential(
  87. nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
  88. nn.BatchNorm2d(inter_channels),
  89. nn.ReLU(inplace=True),
  90. nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
  91. nn.BatchNorm2d(channels),
  92. )
  93. self.global_att = nn.Sequential(
  94. nn.AdaptiveAvgPool2d(1),
  95. nn.Conv2d(channels, inter_channels, kernel_size=1, stride=1, padding=0),
  96. nn.BatchNorm2d(inter_channels),
  97. nn.ReLU(inplace=True),
  98. nn.Conv2d(inter_channels, channels, kernel_size=1, stride=1, padding=0),
  99. nn.BatchNorm2d(channels),
  100. )
  101. self.sigmoid = nn.Sigmoid()
  102. def forward(self, x, residual):
  103. xa = x + residual
  104. xl = self.local_att(xa)
  105. xg = self.global_att(xa)
  106. xlg = xl + xg
  107. wei = self.sigmoid(xlg)
  108. xo = 2 * x * wei + 2 * residual * (1 - wei)
  109. return xo
  110. class Bottleneck_iAFF(nn.Module):
  111. """Standard bottleneck."""
  112. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
  113. """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
  114. expansion.
  115. """
  116. super().__init__()
  117. c_ = int(c2 * e) # hidden channels
  118. self.cv1 = Conv(c1, c_, k[0], 1)
  119. self.cv2 = Conv(c_, c2, k[1], 1, g=g)
  120. self.add = shortcut and c1 == c2
  121. self.iAFF = iAFF(c2)
  122. def forward(self, x):
  123. """'forward()' applies the YOLO FPN to input data."""
  124. if self.add:
  125. results = self.iAFF(x , self.cv2(self.cv1(x)))
  126. else:
  127. results = self.cv2(self.cv1(x))
  128. return results
  129. class Bottleneck_AFF(nn.Module):
  130. """Standard bottleneck."""
  131. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
  132. """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
  133. expansion.
  134. """
  135. super().__init__()
  136. c_ = int(c2 * e) # hidden channels
  137. self.cv1 = Conv(c1, c_, k[0], 1)
  138. self.cv2 = Conv(c_, c2, k[1], 1, g=g)
  139. self.add = shortcut and c1 == c2
  140. self.AFF = AFF(c2)
  141. def forward(self, x):
  142. """'forward()' applies the YOLO FPN to input data."""
  143. if self.add:
  144. results = self.AFF(x, self.cv2(self.cv1(x)))
  145. else:
  146. results = self.cv2(self.cv1(x))
  147. return results
  148. class Bottleneck(nn.Module):
  149. """Standard bottleneck."""
  150. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
  151. """Initializes a standard bottleneck module with optional shortcut connection and configurable parameters."""
  152. super().__init__()
  153. c_ = int(c2 * e) # hidden channels
  154. self.cv1 = Conv(c1, c_, k[0], 1)
  155. self.cv2 = Conv(c_, c2, k[1], 1, g=g)
  156. self.add = shortcut and c1 == c2
  157. def forward(self, x):
  158. """Applies the YOLO FPN to input data."""
  159. return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
  160. class C2f(nn.Module):
  161. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  162. def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
  163. """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
  164. super().__init__()
  165. self.c = int(c2 * e) # hidden channels
  166. self.cv1 = Conv(c1, 2 * self.c, 1, 1)
  167. self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
  168. self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
  169. def forward(self, x):
  170. """Forward pass through C2f layer."""
  171. y = list(self.cv1(x).chunk(2, 1))
  172. y.extend(m(y[-1]) for m in self.m)
  173. return self.cv2(torch.cat(y, 1))
  174. def forward_split(self, x):
  175. """Forward pass using split() instead of chunk()."""
  176. y = list(self.cv1(x).split((self.c, self.c), 1))
  177. y.extend(m(y[-1]) for m in self.m)
  178. return self.cv2(torch.cat(y, 1))
  179. class C3(nn.Module):
  180. """CSP Bottleneck with 3 convolutions."""
  181. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
  182. """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
  183. super().__init__()
  184. c_ = int(c2 * e) # hidden channels
  185. self.cv1 = Conv(c1, c_, 1, 1)
  186. self.cv2 = Conv(c1, c_, 1, 1)
  187. self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
  188. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
  189. def forward(self, x):
  190. """Forward pass through the CSP bottleneck with 2 convolutions."""
  191. return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
  192. class C3k(C3):
  193. """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
  194. def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
  195. """Initializes the C3k module with specified channels, number of layers, and configurations."""
  196. super().__init__(c1, c2, n, shortcut, g, e)
  197. c_ = int(c2 * e) # hidden channels
  198. # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  199. self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
  200. class C3k2_iAFF(C2f):
  201. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  202. def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
  203. """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
  204. super().__init__(c1, c2, n, shortcut, g, e)
  205. self.m = nn.ModuleList(
  206. C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck_iAFF(self.c, self.c, shortcut, g)for _ in range(n)
  207. )
  208. # 解析利用Bottleneck_iAFF替换Bottneck


四、手把手教你添加C3k2 iAFF

4.1 修改一

第一还是建立文件,我们找到如下 ultralytics /nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹( 用群内的文件的话已经有了无需新建) !然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。

​​


4.3 修改三

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可)

​​


4.4 修改四

按照我的添加在parse_model里添加即可。

​​


到此就修改完成了,大家可以复制下面的yaml文件运行。


五、正式训练


5.1 yaml文件1

训练信息:YOLO11-C3k2-iAFF summary: 450 layers, 2,636,114 parameters, 2,636,098 gradients, 6.6 GFLOPs

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2_iAFF, [256, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2_iAFF, [512, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2_iAFF, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2_iAFF, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA, [1024]] # 10
  26. # YOLO11n head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2_iAFF, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2_iAFF, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, Conv, [256, 3, 2]]
  35. - [[-1, 13], 1, Concat, [1]] # cat head P4
  36. - [-1, 2, C3k2_iAFF, [512, False]] # 19 (P4/16-medium)
  37. - [-1, 1, Conv, [512, 3, 2]]
  38. - [[-1, 10], 1, Concat, [1]] # cat head P5
  39. - [-1, 2, C3k2_iAFF, [1024, True]] # 22 (P5/32-large)
  40. - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


5.2 训练代码

大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。

  1. import warnings
  2. warnings.filterwarnings('ignore')
  3. from ultralytics import YOLO
  4. if __name__ == '__main__':
  5. model = YOLO('模型配置文件')
  6. # 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,
  7. # 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!
  8. # model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
  9. model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",
  10. # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
  11. cache=False,
  12. imgsz=640,
  13. epochs=150,
  14. single_cls=False, # 是否是单类别检测
  15. batch=16,
  16. close_mosaic=0,
  17. workers=0,
  18. device='0',
  19. optimizer='SGD', # using SGD
  20. # resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址
  21. amp=True, # 如果出现训练损失为Nan可以关闭amp
  22. project='runs/train',
  23. name='exp',
  24. )


5.3 训练过程截图


五、本文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~