学习资源站

YOLOv11改进-添加注意力机制篇-添加FocusedLinearAttention助力yolov11实现有效涨点(含二次创新C2PSA机制)

一、本文介绍

本文给大家带来的改进机制是 Focused Linear Attention (聚焦线性注意力) 是一种用于视觉 Transformer 模型的 注意力机制 (但是其也可以用在我们的YOLO系列当中从而提高检测精度) ,旨在提高效率和表现力。其解决了两个在传统线性注意力方法中存在的问题:聚焦能力和特征多样性。这种方法通过一个高效的映射 函数 和秩恢复模块来提高计算效率和性能,使其在处理视觉任务时更加高效和有效。 简言之 ,Focused Linear Attention是对传统线性注意力方法的一种重要改进,提高了模型的 聚焦能力和特征表达的多样性 通过本文你能够了解到 Focused Linear Attention的基本原理和框架,能够在你自己的网络结构中进行添加 .



二、 Focused Linear Attention的机制原理

论文地址 官方论文地址

代码地址: 官方代码地址


2.1 Softmax和线性注意力机制的对比

上面的图片是关于比较Softmax注意力和线性注意力的差异。在这张图中,Q、K、V 分别代表查询、键和值矩阵,它们的维度为 R N×d。这里提到的几个关键点包括:

1. Softmax注意力:它需要计算查询和键之间的成对相似度,导致计算复杂度为 O(N^2 d)。这种方法在计算上是昂贵的,特别是当处理大规模数据时。

2. 线性注意力:通过适当的近似手段,线性注意力可以解耦Softmax操作,并通过先计算 K^{T}V 来改变计算顺序,从而将复杂度降低到 O( Nd^{^{2}} )。由于在现代视觉Transformer设计中通道维度 d 通常小于标记数 N(例如,在DeiT中d=64, N=196,在Swin Transformer中d=32, N=49),线性注意力模块实际上降低了总体计算成本。

此处提出了线性注意力机制的优势 (为了后面提出论文提到的注意力机制在线性注意力机制上的优化) :线性注意力模块因此能够在节省计算成本的同时,享受更大的接收域和更高的吞吐量的好处。

总结:这张图片可能是在说明线性注意力如何在保持注意力机制核心功能的同时,提高计算效率,尤其是在处理大规模数据集时的优势。这种方法对于改善视觉Transformer的 性能 和效率具有重要意义 ( 我下面会出将其用在RT-DETR的模型上看看效果 )


2.2 Focused Linear Attention 的提出

线性注意力的限制和改进: 尽管线性注意力降低了复杂度,但现有的线性注意力方法仍存在性能下降的问题,并可能因映射函数带来额外的计算开销。为了解决这些问题,作者提出了一个新颖的聚焦线性注意力(Focused Linear Attention)模块。该模块通过简单的映射函数调整查询和键的特征方向,使注意力权重更加明显。此外,还通过深度卷积(DWC)应用于原始注意力矩阵的秩恢复模块来增加特征多样性。

Focused Linear Attention(聚焦线性注意力) 是一种用于视觉 Transformer模型 的注意力机制 ( 但是其也可以用在我们的YOLO系列当中从而提高检测精度) ,旨在提高效率和表现力。它解决了传统线性注意力方法的两个主要问题:

1. 聚焦能力: 以往的线性注意力缺乏足够的聚焦能力,导致模型难以有效地关注重要特征。Focused Linear Attention通过改进的机制增强了这种聚焦能力。

2. 特征多样性: 传统方法在特征表达上缺乏多样性,影响了模型的表现力。Focused Linear Attention通过特殊的设计来增加特征的多样性和丰富性。

这种方法通过一个高效的映射函数和秩恢复模块来提高计算效率和性能,使其在处理视觉任务时更加高效和有效。

总结: Focused Linear Attention是对传统线性注意力方法的一种重要改进,提高了模型的聚焦能力和特征表达的多样性。


2.3 效果对比

上面的图片显示了多个视觉Transformer模型的性能和计算复杂度的比较。图中分为四个部分:

1. PVT: 对比了不同版本的PVT(Pyramid Vision Transformer),DeiT(Data-efficient Image Transformer),以及T2T(Tokens-to-Token ViT)的Top-1准确率和计算量(FLOPs)。

2. PVT v2: 类似地,展示了PVT v2、ConvNext、DAT(Deformable Attention Transformer)的性能对比。

3. Swin: 对比了Swin Transformer、CvT(Convolutional vision Transformer),以及CoTNet(Contextual Transformer Network)的模型。

4. CSwin: 展示了CSwin Transformer、MViTv2、CoAtNet的性能对比。

在每个图中,还包括了作者提出的FLatten版本的Transformer模型(标记为“Ours”),其在每个分类中都显示了相对较高的准确率或者在相似的FLOPs计算量下具有竞争力的准确率。

右侧的表格详细列出了不同模型的分辨率(Reso)、参数数量(#Params)、计算量(Flops)和Top-1准确率。表中突出了FLatten版本的Transformer模型在Top-1准确率上相对于原始模型的提升(括号中的百分点)。

个人总结: 这张图片展示了通过改进的线性注意力模块,即FLatten模型,在保持或稍微增加计算量的前提下,提高了Transformer架构的图像识别准确率。


三、FocusedLinearAttention代码

FLA的核心代码!

  1. import torch.nn as nn
  2. import torch
  3. from einops import rearrange
  4. __all__ = ['FocusedLinearAttention', 'C2f_FLA', 'PSAFLA']
  5. class FocusedLinearAttention(nn.Module):
  6. def __init__(self, dim, num_patches=64, num_heads=8, qkv_bias=True, qk_scale=None, attn_drop=0.0, proj_drop=0.0,
  7. sr_ratio=1,
  8. focusing_factor=3.0, kernel_size=5):
  9. super().__init__()
  10. assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
  11. self.dim = dim
  12. self.num_heads = num_heads
  13. head_dim = dim // num_heads
  14. self.q = nn.Linear(dim, dim, bias=qkv_bias)
  15. self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
  16. self.attn_drop = nn.Dropout(attn_drop)
  17. self.proj = nn.Linear(dim, dim)
  18. self.proj_drop = nn.Dropout(proj_drop)
  19. self.sr_ratio = sr_ratio
  20. if sr_ratio > 1:
  21. self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
  22. self.norm = nn.LayerNorm(dim)
  23. self.focusing_factor = focusing_factor
  24. self.dwc = nn.Conv2d(in_channels=head_dim, out_channels=head_dim, kernel_size=kernel_size,
  25. groups=head_dim, padding=kernel_size // 2)
  26. self.scale = nn.Parameter(torch.zeros(size=(1, 1, dim)))
  27. # self.positional_encoding = nn.Parameter(torch.zeros(size=(1, num_patches // (sr_ratio * sr_ratio), dim)))
  28. def forward(self, x):
  29. B, C, H, W = x.shape # 输入为四维:[批次大小, 通道数, 高度, 宽度]
  30. dtype, device = x.dtype, x.device
  31. # 调整输入以匹配原始模块的预期格式
  32. x = rearrange(x, 'b c h w -> b (h w) c')
  33. q = self.q(x)
  34. if self.sr_ratio > 1:
  35. x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
  36. x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
  37. x_ = self.norm(x_)
  38. kv = self.kv(x_).reshape(B, -1, 2, C).permute(2, 0, 1, 3)
  39. else:
  40. kv = self.kv(x).reshape(B, -1, 2, C).permute(2, 0, 1, 3)
  41. k, v = kv[0], kv[1]
  42. N = H * W # 序列长度
  43. # 重新生成位置编码
  44. positional_encoding = nn.Parameter(torch.zeros(size=(1, N, self.dim), device=device))
  45. k = k + positional_encoding
  46. focusing_factor = self.focusing_factor
  47. kernel_function = nn.ReLU()
  48. scale = nn.Softplus()(self.scale)
  49. q = kernel_function(q) + 1e-6
  50. k = kernel_function(k) + 1e-6
  51. q = q / scale
  52. k = k / scale
  53. q_norm = q.norm(dim=-1, keepdim=True)
  54. k_norm = k.norm(dim=-1, keepdim=True)
  55. q = q ** focusing_factor
  56. k = k ** focusing_factor
  57. q = (q / q.norm(dim=-1, keepdim=True)) * q_norm
  58. k = (k / k.norm(dim=-1, keepdim=True)) * k_norm
  59. bool = False
  60. if dtype == torch.float16:
  61. q = q.float()
  62. k = k.float()
  63. v = v.float()
  64. bool = True
  65. q, k, v = (rearrange(x, "b n (h c) -> (b h) n c", h=self.num_heads) for x in [q, k, v])
  66. i, j, c, d = q.shape[-2], k.shape[-2], k.shape[-1], v.shape[-1]
  67. z = 1 / (torch.einsum("b i c, b c -> b i", q, k.sum(dim=1)) + 1e-6)
  68. if i * j * (c + d) > c * d * (i + j):
  69. kv = torch.einsum("b j c, b j d -> b c d", k, v)
  70. x = torch.einsum("b i c, b c d, b i -> b i d", q, kv, z)
  71. else:
  72. qk = torch.einsum("b i c, b j c -> b i j", q, k)
  73. x = torch.einsum("b i j, b j d, b i -> b i d", qk, v, z)
  74. if self.sr_ratio > 1:
  75. v = nn.functional.interpolate(v.permute(0, 2, 1), size=x.shape[1], mode='linear').permute(0, 2, 1)
  76. if bool:
  77. v = v.to(torch.float16)
  78. x = x.to(torch.float16)
  79. num = int(v.shape[1] ** 0.5)
  80. feature_map = rearrange(v, "b (w h) c -> b c w h", w=num, h=num)
  81. feature_map = rearrange(self.dwc(feature_map), "b c w h -> b (w h) c")
  82. x = x + feature_map
  83. x = rearrange(x, "(b h) n c -> b n (h c)", h=self.num_heads)
  84. x = self.proj(x)
  85. x = self.proj_drop(x)
  86. x = rearrange(x, 'b (h w) c -> b c h w', h=H, w=W)
  87. return x
  88. def autopad(k, p=None, d=1): # kernel, padding, dilation
  89. """Pad to 'same' shape outputs."""
  90. if d > 1:
  91. k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
  92. if p is None:
  93. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  94. return p
  95. class Conv(nn.Module):
  96. """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
  97. default_act = nn.SiLU() # default activation
  98. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
  99. """Initialize Conv layer with given arguments including activation."""
  100. super().__init__()
  101. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
  102. self.bn = nn.BatchNorm2d(c2)
  103. self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
  104. def forward(self, x):
  105. """Apply convolution, batch normalization and activation to input tensor."""
  106. return self.act(self.bn(self.conv(x)))
  107. def forward_fuse(self, x):
  108. """Perform transposed convolution of 2D data."""
  109. return self.act(self.conv(x))
  110. class Bottleneck_FLA(nn.Module):
  111. """Standard bottleneck."""
  112. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
  113. """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
  114. expansion.
  115. """
  116. super().__init__()
  117. c_ = int(c2 * e) # hidden channels
  118. self.cv1 = Conv(c1, c_, k[0], 1)
  119. self.cv2 = Conv(c_, c2, k[1], 1, g=g)
  120. self.FLA = FocusedLinearAttention(c_)
  121. self.add = shortcut and c1 == c2
  122. def forward(self, x):
  123. """'forward()' applies the YOLO FPN to input data."""
  124. return x + self.cv2(self.cv1(x)) if self.add else self.FLA(self.cv2(self.cv1(x)))
  125. class C2f_FLA(nn.Module):
  126. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  127. def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
  128. """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
  129. expansion.
  130. """
  131. super().__init__()
  132. self.c = int(c2 * e) # hidden channels
  133. self.cv1 = Conv(c1, 2 * self.c, 1, 1)
  134. self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
  135. self.m = nn.ModuleList(Bottleneck_FLA(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
  136. def forward(self, x):
  137. """Forward pass through C2f layer."""
  138. x = self.cv1(x)
  139. x = x.chunk(2, 1)
  140. y = list(x)
  141. # y = list(self.cv1(x).chunk(2, 1))
  142. y.extend(m(y[-1]) for m in self.m)
  143. return self.cv2(torch.cat(y, 1))
  144. def forward_split(self, x):
  145. """Forward pass using split() instead of chunk()."""
  146. y = list(self.cv1(x).split((self.c, self.c), 1))
  147. y.extend(m(y[-1]) for m in self.m)
  148. return self.cv2(torch.cat(y, 1))
  149. def autopad(k, p=None, d=1): # kernel, padding, dilation
  150. """Pad to 'same' shape outputs."""
  151. if d > 1:
  152. k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
  153. if p is None:
  154. p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
  155. return p
  156. class Conv(nn.Module):
  157. """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
  158. default_act = nn.SiLU() # default activation
  159. def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
  160. """Initialize Conv layer with given arguments including activation."""
  161. super().__init__()
  162. self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
  163. self.bn = nn.BatchNorm2d(c2)
  164. self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
  165. def forward(self, x):
  166. """Apply convolution, batch normalization and activation to input tensor."""
  167. return self.act(self.bn(self.conv(x)))
  168. def forward_fuse(self, x):
  169. """Perform transposed convolution of 2D data."""
  170. return self.act(self.conv(x))
  171. class PSAFLA(nn.Module):
  172. def __init__(self, c1, c2, e=0.5):
  173. super().__init__()
  174. assert (c1 == c2)
  175. self.c = int(c1 * e)
  176. self.cv1 = Conv(c1, 2 * self.c, 1, 1)
  177. self.cv2 = Conv(2 * self.c, c1, 1)
  178. self.attn = FocusedLinearAttention(self.c, num_patches=64, num_heads=self.c // 64)
  179. self.ffn = nn.Sequential(
  180. Conv(self.c, self.c * 2, 1),
  181. Conv(self.c * 2, self.c, 1, act=False)
  182. )
  183. def forward(self, x):
  184. a, b = self.cv1(x).split((self.c, self.c), dim=1)
  185. b = b + self.attn(b)
  186. b = b + self.ffn(b)
  187. return self.cv2(torch.cat((a, b), 1))

修改了FLAttention的C2f和Bottleneck

  1. class Bottleneck_FLA(nn.Module):
  2. """Standard bottleneck."""
  3. def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
  4. """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
  5. expansion.
  6. """
  7. super().__init__()
  8. c_ = int(c2 * e) # hidden channels
  9. self.cv1 = Conv(c1, c_, k[0], 1)
  10. self.cv2 = Conv(c_, c2, k[1], 1, g=g)
  11. self.FLA = FocusedLinearAttention(c_)
  12. self.add = shortcut and c1 == c2
  13. def forward(self, x):
  14. """'forward()' applies the YOLO FPN to input data."""
  15. return x + self.cv2(self.cv1(x)) if self.add else self.FLA(self.cv2(self.cv1(x)))
  16. class C2f_FLA(nn.Module):
  17. """Faster Implementation of CSP Bottleneck with 2 convolutions."""
  18. def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
  19. """Initialize CSP bottleneck layer with two convolutions with arguments ch_in, ch_out, number, shortcut, groups,
  20. expansion.
  21. """
  22. super().__init__()
  23. self.c = int(c2 * e) # hidden channels
  24. self.cv1 = Conv(c1, 2 * self.c, 1, 1)
  25. self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
  26. self.m = nn.ModuleList(Bottleneck_FLA(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
  27. def forward(self, x):
  28. """Forward pass through C2f layer."""
  29. x = self.cv1(x)
  30. x = x.chunk(2, 1)
  31. y = list(x)
  32. # y = list(self.cv1(x).chunk(2, 1))
  33. y.extend(m(y[-1]) for m in self.m)
  34. return self.cv2(torch.cat(y, 1))
  35. def forward_split(self, x):
  36. """Forward pass using split() instead of chunk()."""
  37. y = list(self.cv1(x).split((self.c, self.c), 1))
  38. y.extend(m(y[-1]) for m in self.m)
  39. return self.cv2(torch.cat(y, 1))


四、添加 Focused Linear Attention 到模型中

4.1 修改一

第一还是建立文件,我们找到如下 ultralytics /nn文件夹下建立一个目录名字呢就是'Addmodules'文件夹( 用群内的文件的话已经有了无需新建) !然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。


4.2 修改二

第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。


4.3 修改三

第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可)

从今天开始以后的教程就都统一成这个样子了,因为我默认大家用了我群内的文件来进行修改!!


4.4 修改四

按照我的添加在parse_model里添加即可,两个图片都是本文的机制大家按照图片进行添加即可!

到此就修改完成了,大家可以复制下面的yaml文件运行。


五、模型配置文件

5.1 配置文件1

YOLO11-C2PSA-FLA summary: 314 layers, 2,610,395 parameters, 2,610,379 gradients, 6.5 GFLOPs

注意:次机制部分数据集运行会报错,具体原因未知.

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2, [256, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2, [512, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA_FLA, [1024]] # 10
  26. # YOLO11n head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, Conv, [256, 3, 2]]
  35. - [[-1, 13], 1, Concat, [1]] # cat head P4
  36. - [-1, 2, C3k2, [512, False]] # 19 (P4/16-medium)
  37. - [-1, 1, Conv, [512, 3, 2]]
  38. - [[-1, 10], 1, Concat, [1]] # cat head P5
  39. - [-1, 2, C3k2, [1024, True]] # 22 (P5/32-large)
  40. - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)


5.2 配置文件2

YOLO11-FLA summary: 340 layers, 2,942,475 parameters, 2,942,459 gradients, 7.1 GFLOPs

注意力机制我这里其实是添加了三个但是实际一般生效就只添加一个就可以了,所以大家可以自行注释来尝试.

  1. # Ultralytics YOLO 🚀, AGPL-3.0 license
  2. # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
  3. # Parameters
  4. nc: 80 # number of classes
  5. scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
  6. # [depth, width, max_channels]
  7. n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
  8. s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
  9. m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
  10. l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
  11. x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
  12. # YOLO11n backbone
  13. backbone:
  14. # [from, repeats, module, args]
  15. - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
  16. - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
  17. - [-1, 2, C3k2, [256, False, 0.25]]
  18. - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
  19. - [-1, 2, C3k2, [512, False, 0.25]]
  20. - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
  21. - [-1, 2, C3k2, [512, True]]
  22. - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
  23. - [-1, 2, C3k2, [1024, True]]
  24. - [-1, 1, SPPF, [1024, 5]] # 9
  25. - [-1, 2, C2PSA, [1024]] # 10
  26. # YOLO11n head
  27. head:
  28. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  29. - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  30. - [-1, 2, C3k2, [512, False]] # 13
  31. - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  32. - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  33. - [-1, 2, C3k2, [256, False]] # 16 (P3/8-small)
  34. - [-1, 1, FocusedLinearAttention, []] # 17 (P3/8-small) 小目标检测层输出位置增加注意力机制
  35. - [-1, 1, Conv, [256, 3, 2]]
  36. - [[-1, 13], 1, Concat, [1]] # cat head P4
  37. - [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
  38. - [-1, 1, FocusedLinearAttention, []] # 21 (P4/16-medium) 中目标检测层输出位置增加注意力机制
  39. - [-1, 1, Conv, [512, 3, 2]]
  40. - [[-1, 10], 1, Concat, [1]] # cat head P5
  41. - [-1, 2, C3k2, [1024, True]] # 24 (P5/32-large)
  42. - [-1, 1, FocusedLinearAttention, []] # 25 (P5/32-large) 大目标检测层输出位置增加注意力机制
  43. # 注意力机制我这里其实是添加了三个但是实际一般生效就只添加一个就可以了,所以大家可以自行注释来尝试.
  44. # 具体在那一层用注意力机制可以根据自己的数据集场景进行选择。
  45. # 如果你自己配置注意力位置注意from[17, 21, 25]位置要对应上对应的检测层!
  46. - [[17, 21, 25], 1, Detect, [nc]] # Detect(P3, P4, P5)


5.3 训练代码

  1. import warnings
  2. warnings.filterwarnings('ignore')
  3. from ultralytics import YOLO
  4. if __name__ == '__main__':
  5. model = YOLO('模型yaml文件地址')
  6. # 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,
  7. # 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!
  8. # model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
  9. model.train(data=r"填写你数据集yaml文件地址",
  10. # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
  11. cache=False,
  12. imgsz=640,
  13. epochs=150,
  14. single_cls=False, # 是否是单类别检测
  15. batch=4,
  16. close_mosaic=0,
  17. workers=0,
  18. device='0',
  19. optimizer='SGD', # using SGD
  20. # resume=True, # 这里是填写True
  21. amp=False, # 如果出现训练损失为Nan可以关闭amp
  22. project='runs/train',
  23. name='exp',
  24. )


六、全文总结

到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充, 目前本专栏免费阅读(暂时,大家尽早关注不迷路~) ,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~