一、本文介绍
本文给大家带来的改进机制是一种新的 卷积层 , 称为WTConv(小波卷积层) ,它利用 小波变换 (WT)来解决 卷积神经网络 (CNN)在实现大感受野时遇到的过度参数化问题。WTConv的主要目的是通过对输入数据的不同频率带进行处理,使CNN能够更有效地捕捉局部和全局特征,WTConv成功解决了CNN在感受野扩展中的参数膨胀问题,提供了一种更为高效、鲁棒且易于集成的卷积层解决方案,我将其用于二次创新YOLOv11中的C3k2机制可以减少一定参数量和计算量,达到一个可观的轻量化作用 (这种小波Conv对于目前的创新角度来说是非常流行的) 。
二、原理介绍
官方论文地址:
官方论文地址点击此处即可跳转
官方代码地址: 官方代码地址点击此处即可跳转
这篇名为《用于大感受野的小波卷积》的文章提出了一种新的卷积层,称为WTConv(小波卷积层),它利用小波变换(WT)来解决卷积神经网络(CNN)在实现大感受野时遇到的过度参数化问题。WTConv的主要目的是通过对输入数据的不同频率带进行处理,使CNN能够更有效地捕捉局部和全局特征,而传统的CNN主要只能处理局部特征。
以下是文章的主要内容总结:
1. 问题背景:传统的CNN受限于卷积核的大小,难以有效捕捉全局上下文信息。尽管近年来通过增大卷积核(如视觉 Transformer )的尝试有所进展,但这通常会导致参数数量激增, 模型 性能饱和。
2. 提出的解决方案(WTConv):WTConv利用小波变换,通过多频率响应扩展卷积感受野,并在不同频率范围内执行小核卷积操作。通过小波分解,模型可以在更大范围内捕捉低频信息,同时避免模型的过度参数化。
3. 主要优势:
- 参数增长缓慢:与传统方法相比,WTConv的参数数量仅随感受野大小对数级别增长,而不是平方增长。
- 感受野扩大:WTConv通过层级小波分解,能够在不增加大量参数的情况下显著扩大CNN的感受野。
- 形状偏差提升:WTConv层对图像中的低频信息更敏感,从而增强了CNN对形状而非纹理的响应能力。
总的来说,WTConv成功解决了CNN在感受野扩展中的参数膨胀问题,提供了一种更为高效、鲁棒且易于集成的卷积层解决方案。
三、核心代码
核心代码的使用方式看章节四!
- import torch.nn as nn
- from functools import partial
- import pywt
- import pywt.data
- import torch
- import torch.nn.functional as F
- def create_wavelet_filter(wave, in_size, out_size, type=torch.float):
- w = pywt.Wavelet(wave)
- dec_hi = torch.tensor(w.dec_hi[::-1], dtype=type)
- dec_lo = torch.tensor(w.dec_lo[::-1], dtype=type)
- dec_filters = torch.stack([dec_lo.unsqueeze(0) * dec_lo.unsqueeze(1),
- dec_lo.unsqueeze(0) * dec_hi.unsqueeze(1),
- dec_hi.unsqueeze(0) * dec_lo.unsqueeze(1),
- dec_hi.unsqueeze(0) * dec_hi.unsqueeze(1)], dim=0)
- dec_filters = dec_filters[:, None].repeat(in_size, 1, 1, 1)
- rec_hi = torch.tensor(w.rec_hi[::-1], dtype=type).flip(dims=[0])
- rec_lo = torch.tensor(w.rec_lo[::-1], dtype=type).flip(dims=[0])
- rec_filters = torch.stack([rec_lo.unsqueeze(0) * rec_lo.unsqueeze(1),
- rec_lo.unsqueeze(0) * rec_hi.unsqueeze(1),
- rec_hi.unsqueeze(0) * rec_lo.unsqueeze(1),
- rec_hi.unsqueeze(0) * rec_hi.unsqueeze(1)], dim=0)
- rec_filters = rec_filters[:, None].repeat(out_size, 1, 1, 1)
- return dec_filters, rec_filters
- def wavelet_transform(x, filters):
- b, c, h, w = x.shape
- pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
- x = F.conv2d(x, filters, stride=2, groups=c, padding=pad)
- x = x.reshape(b, c, 4, h // 2, w // 2)
- return x
- def inverse_wavelet_transform(x, filters):
- b, c, _, h_half, w_half = x.shape
- pad = (filters.shape[2] // 2 - 1, filters.shape[3] // 2 - 1)
- x = x.reshape(b, c * 4, h_half, w_half)
- x = F.conv_transpose2d(x, filters, stride=2, groups=c, padding=pad)
- return x
- class WTConv2d(nn.Module):
- def __init__(self, in_channels, out_channels, kernel_size=5, stride=1, bias=True, wt_levels=1, wt_type='db1'):
- super(WTConv2d, self).__init__()
- assert in_channels == out_channels
- self.in_channels = in_channels
- self.wt_levels = wt_levels
- self.stride = stride
- self.dilation = 1
- self.wt_filter, self.iwt_filter = create_wavelet_filter(wt_type, in_channels, in_channels, torch.float)
- self.wt_filter = nn.Parameter(self.wt_filter, requires_grad=False)
- self.iwt_filter = nn.Parameter(self.iwt_filter, requires_grad=False)
- self.wt_function = partial(wavelet_transform, filters=self.wt_filter)
- self.iwt_function = partial(inverse_wavelet_transform, filters=self.iwt_filter)
- self.base_conv = nn.Conv2d(in_channels, in_channels, kernel_size, padding='same', stride=1, dilation=1,
- groups=in_channels, bias=bias)
- self.base_scale = _ScaleModule([1, in_channels, 1, 1])
- self.wavelet_convs = nn.ModuleList(
- [nn.Conv2d(in_channels * 4, in_channels * 4, kernel_size, padding='same', stride=1, dilation=1,
- groups=in_channels * 4, bias=False) for _ in range(self.wt_levels)]
- )
- self.wavelet_scale = nn.ModuleList(
- [_ScaleModule([1, in_channels * 4, 1, 1], init_scale=0.1) for _ in range(self.wt_levels)]
- )
- if self.stride > 1:
- self.stride_filter = nn.Parameter(torch.ones(in_channels, 1, 1, 1), requires_grad=False)
- self.do_stride = lambda x_in: F.conv2d(x_in, self.stride_filter, bias=None, stride=self.stride,
- groups=in_channels)
- else:
- self.do_stride = None
- def forward(self, x):
- x_ll_in_levels = []
- x_h_in_levels = []
- shapes_in_levels = []
- curr_x_ll = x
- for i in range(self.wt_levels):
- curr_shape = curr_x_ll.shape
- shapes_in_levels.append(curr_shape)
- if (curr_shape[2] % 2 > 0) or (curr_shape[3] % 2 > 0):
- curr_pads = (0, curr_shape[3] % 2, 0, curr_shape[2] % 2)
- curr_x_ll = F.pad(curr_x_ll, curr_pads)
- curr_x = self.wt_function(curr_x_ll)
- curr_x_ll = curr_x[:, :, 0, :, :]
- shape_x = curr_x.shape
- curr_x_tag = curr_x.reshape(shape_x[0], shape_x[1] * 4, shape_x[3], shape_x[4])
- curr_x_tag = self.wavelet_scale[i](self.wavelet_convs[i](curr_x_tag))
- curr_x_tag = curr_x_tag.reshape(shape_x)
- x_ll_in_levels.append(curr_x_tag[:, :, 0, :, :])
- x_h_in_levels.append(curr_x_tag[:, :, 1:4, :, :])
- next_x_ll = 0
- for i in range(self.wt_levels - 1, -1, -1):
- curr_x_ll = x_ll_in_levels.pop()
- curr_x_h = x_h_in_levels.pop()
- curr_shape = shapes_in_levels.pop()
- curr_x_ll = curr_x_ll + next_x_ll
- curr_x = torch.cat([curr_x_ll.unsqueeze(2), curr_x_h], dim=2)
- next_x_ll = self.iwt_function(curr_x)
- next_x_ll = next_x_ll[:, :, :curr_shape[2], :curr_shape[3]]
- x_tag = next_x_ll
- assert len(x_ll_in_levels) == 0
- x = self.base_scale(self.base_conv(x))
- x = x + x_tag
- if self.do_stride is not None:
- x = self.do_stride(x)
- return x
- class _ScaleModule(nn.Module):
- def __init__(self, dims, init_scale=1.0, init_bias=0):
- super(_ScaleModule, self).__init__()
- self.dims = dims
- self.weight = nn.Parameter(torch.ones(*dims) * init_scale)
- self.bias = None
- def forward(self, x):
- return torch.mul(self.weight, x)
- def autopad(k, p=None, d=1): # kernel, padding, dilation
- """Pad to 'same' shape outputs."""
- if d > 1:
- k = d * (k - 1) + 1 if isinstance(k, int) else [d * (x - 1) + 1 for x in k] # actual kernel-size
- if p is None:
- p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
- return p
- class Conv(nn.Module):
- """Standard convolution with args(ch_in, ch_out, kernel, stride, padding, groups, dilation, activation)."""
- default_act = nn.SiLU() # default activation
- def __init__(self, c1, c2, k=1, s=1, p=None, g=1, d=1, act=True):
- """Initialize Conv layer with given arguments including activation."""
- super().__init__()
- self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p, d), groups=g, dilation=d, bias=False)
- self.bn = nn.BatchNorm2d(c2)
- self.act = self.default_act if act is True else act if isinstance(act, nn.Module) else nn.Identity()
- def forward(self, x):
- """Apply convolution, batch normalization and activation to input tensor."""
- return self.act(self.bn(self.conv(x)))
- def forward_fuse(self, x):
- """Perform transposed convolution of 2D data."""
- return self.act(self.conv(x))
- class Bottleneck(nn.Module):
- """Standard bottleneck."""
- def __init__(self, c1, c2, shortcut=True, g=1, k=(3, 3), e=0.5):
- """Initializes a bottleneck module with given input/output channels, shortcut option, group, kernels, and
- expansion.
- """
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, k[0], 1)
- if c_ == c2:
- self.cv2 = WTConv2d(c_, c2, 5, 1)
- else:
- self.cv2 = Conv(c_, c2, k[1], 1, g=g)
- self.add = shortcut and c1 == c2
- def forward(self, x):
- """'forward()' applies the YOLO FPN to input data."""
- return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
- class C2f(nn.Module):
- """Faster Implementation of CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):
- """Initializes a CSP bottleneck with 2 convolutions and n Bottleneck blocks for faster processing."""
- super().__init__()
- self.c = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, 2 * self.c, 1, 1)
- self.cv2 = Conv((2 + n) * self.c, c2, 1) # optional act=FReLU(c2)
- self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))
- def forward(self, x):
- """Forward pass through C2f layer."""
- y = list(self.cv1(x).chunk(2, 1))
- y.extend(m(y[-1]) for m in self.m)
- return self.cv2(torch.cat(y, 1))
- def forward_split(self, x):
- """Forward pass using split() instead of chunk()."""
- y = list(self.cv1(x).split((self.c, self.c), 1))
- y.extend(m(y[-1]) for m in self.m)
- return self.cv2(torch.cat(y, 1))
- class C3(nn.Module):
- """CSP Bottleneck with 3 convolutions."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
- """Initialize the CSP Bottleneck with given channels, number, shortcut, groups, and expansion values."""
- super().__init__()
- c_ = int(c2 * e) # hidden channels
- self.cv1 = Conv(c1, c_, 1, 1)
- self.cv2 = Conv(c1, c_, 1, 1)
- self.cv3 = Conv(2 * c_, c2, 1) # optional act=FReLU(c2)
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=((1, 1), (3, 3)), e=1.0) for _ in range(n)))
- def forward(self, x):
- """Forward pass through the CSP bottleneck with 2 convolutions."""
- return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), 1))
- class C3k(C3):
- """C3k is a CSP bottleneck module with customizable kernel sizes for feature extraction in neural networks."""
- def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5, k=3):
- """Initializes the C3k module with specified channels, number of layers, and configurations."""
- super().__init__(c1, c2, n, shortcut, g, e)
- c_ = int(c2 * e) # hidden channels
- # self.m = nn.Sequential(*(RepBottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
- self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, k=(k, k), e=1.0) for _ in range(n)))
- class C3k2_WTConv(C2f):
- """Faster Implementation of CSP Bottleneck with 2 convolutions."""
- def __init__(self, c1, c2, n=1, c3k=False, e=0.5, g=1, shortcut=True):
- """Initializes the C3k2 module, a faster CSP Bottleneck with 2 convolutions and optional C3k blocks."""
- super().__init__(c1, c2, n, shortcut, g, e)
- self.m = nn.ModuleList(
- C3k(self.c, self.c, 2, shortcut, g) if c3k else Bottleneck(self.c, self.c, shortcut, g) for _ in range(n)
- )
- if __name__ == "__main__":
- # Generating Sample image
- image_size = (1, 64, 240, 240)
- image = torch.rand(*image_size)
- # Model
- mobilenet_v1 = C3k2_WTConv(64, 64)
- out = mobilenet_v1(image)
- print(out.size())
四、手把手教你添加C3k2
4.1 修改一
第一还是建立文件,我们找到如下 ultralytics /nn/modules文件夹下建立一个目录名字呢就是'Addmodules'文件夹( 用群内的文件的话已经有了无需新建) !然后在其内部建立一个新的py文件将核心代码复制粘贴进去即可。
4.2 修改二
第二步我们在该目录下创建一个新的py文件名字为'__init__.py'( 用群内的文件的话已经有了无需新建) ,然后在其内部导入我们的检测头如下图所示。
4.3 修改三
第三步我门中到如下文件'ultralytics/nn/tasks.py'进行导入和注册我们的模块( 用群内的文件的话已经有了无需重新导入直接开始第四步即可) !
4.4 修改四
按照我的添加在parse_model里添加即可。
到此就修改完成了,大家可以复制下面的yaml文件运行。
五、正式训练
5.1 yaml文件
训练信息: YOLO11-C3k2-WTConv summary: 344 layers, 2,480,347 parameters, 2,470,091 gradients, 6.3 GFLOPs
基础版本信息: YOLO11 summary: 319 layers, 2,594,715 parameters, 2,594,699 gradients, 6.5 GFLOPs
- # Ultralytics YOLO 🚀, AGPL-3.0 license
- # YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
- # Parameters
- nc: 80 # number of classes
- scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
- # [depth, width, max_channels]
- n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
- s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
- m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
- l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
- x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
- # YOLO11n backbone
- backbone:
- # [from, repeats, module, args]
- - [-1, 1, Conv, [64, 3, 2]] # 0-P1/2
- - [-1, 1, Conv, [128, 3, 2]] # 1-P2/4
- - [-1, 2, C3k2_WTConv, [256, False, 0.25]]
- - [-1, 1, Conv, [256, 3, 2]] # 3-P3/8
- - [-1, 2, C3k2_WTConv, [512, False, 0.25]]
- - [-1, 1, Conv, [512, 3, 2]] # 5-P4/16
- - [-1, 2, C3k2_WTConv, [512, True]]
- - [-1, 1, Conv, [1024, 3, 2]] # 7-P5/32
- - [-1, 2, C3k2_WTConv, [1024, True]]
- - [-1, 1, SPPF, [1024, 5]] # 9
- - [-1, 2, C2PSA, [1024]] # 10
- # YOLO11n head
- head:
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 6], 1, Concat, [1]] # cat backbone P4
- - [-1, 2, C3k2_WTConv, [512, False]] # 13
- - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- - [[-1, 4], 1, Concat, [1]] # cat backbone P3
- - [-1, 2, C3k2_WTConv, [256, False]] # 16 (P3/8-small)
- - [-1, 1, Conv, [256, 3, 2]]
- - [[-1, 13], 1, Concat, [1]] # cat head P4
- - [-1, 2, C3k2_WTConv, [512, False]] # 19 (P4/16-medium)
- - [-1, 1, Conv, [512, 3, 2]]
- - [[-1, 10], 1, Concat, [1]] # cat head P5
- - [-1, 2, C3k2_WTConv, [1024, True]] # 22 (P5/32-large)
- - [[16, 19, 22], 1, Detect, [nc]] # Detect(P3, P4, P5)
5.2 训练代码
大家可以创建一个py文件将我给的代码复制粘贴进去,配置好自己的文件路径即可运行。
- import warnings
- warnings.filterwarnings('ignore')
- from ultralytics import YOLO
- if __name__ == '__main__':
- model = YOLO('模型配置文件')
- # 如何切换模型版本, 上面的ymal文件可以改为 yolov8s.yaml就是使用的v8s,
- # 类似某个改进的yaml文件名称为yolov8-XXX.yaml那么如果想使用其它版本就把上面的名称改为yolov8l-XXX.yaml即可(改的是上面YOLO中间的名字不是配置文件的)!
- # model.load('yolov8n.pt') # 是否加载预训练权重,科研不建议大家加载否则很难提升精度
- model.train(data=r"C:\Users\Administrator\PycharmProjects\yolov5-master\yolov5-master\Construction Site Safety.v30-raw-images_latestversion.yolov8\data.yaml",
- # 如果大家任务是其它的'ultralytics/cfg/default.yaml'找到这里修改task可以改成detect, segment, classify, pose
- cache=False,
- imgsz=640,
- epochs=150,
- single_cls=False, # 是否是单类别检测
- batch=16,
- close_mosaic=0,
- workers=0,
- device='0',
- optimizer='SGD', # using SGD
- # resume='runs/train/exp21/weights/last.pt', # 如过想续训就设置last.pt的地址
- amp=True, # 如果出现训练损失为Nan可以关闭amp
- project='runs/train',
- name='exp',
- )
5.3 训练过程截图
五、本文总结
到此本文的正式分享内容就结束了,在这里给大家推荐我的YOLOv11改进有效涨点专栏,本专栏目前为新开的平均质量分98分,后期我会根据各种最新的前沿顶会进行论文复现,也会对一些老的改进机制进行补充,如果大家觉得本文帮助到你了,订阅本专栏,关注后续更多的更新~