学习资源站

【YOLOv8多模态融合改进】在前期,中期,中后期,后期多模态融合中添加P2小目标检测层,完整步骤及代码_yolov8小目标检测层怎么添加-

【YOLOv8多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码

前言

主题: YOLOv8 的多模态融合改进中增加P2小目标检测层

方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。

内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。


一、YOLOv8原始模型结构介绍

YOLOv8 原始模型结构如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

二、有效特征层对应的检测头类别

2.1 P3/8 - small检测头

  • 原始模型中的 P3/8特征层 对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
  • 适合检测尺寸大概在 8x8 32x32 像素左右的目标。

2.2 P4/16 - medium检测头

  • 这个检测头对应的 P4/16特征层 经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
  • 它主要用于检测中等大小的目标,尺寸范围大概在 32x32 64x64 像素左右。

2.3 P5/32 - large检测头

  • P5/32 是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
  • 该检测头适合检测较大尺寸的目标,一般是尺寸在 64x64像素以上 的目标。

2.4 新添加针对小目标的检测头

  • 新添加的检测头主要用于检测更小尺寸的目标。尺寸在 4x4 8x8 像素左右的微小目标。

💡这是因为在目标检测任务中,随着目标尺寸的减小,需要更高分辨率的特征图来有效捕捉目标特征。新添加的检测头很可能是基于这样的考虑,通过一系列的卷积、上采样和拼接等操作生成适合微小目标检测的特征图,从而提高模型对微小目标的检测能力。

三、小目标检测头多模态融合方式

  1. 前期融合中,在网络输入阶段将多模态数据合并后,增加针对小目标的检测层。

  2. 中期融合中,在骨干网络中增加针对P2的多模态特征进行融合,以此引出小目标的检测层。

  3. 中-后期融合中,在颈部的FPN结构中,增加针对P2的多模态特征进行融合,以此引出小目标的检测层。

  4. 后期融合中,在检测头前增加P2多模态特征进行融合。

四、完整配置步骤

!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

4.1 P2前期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0
  - [-1, 1, Conv, [64, 3, 2]]  # 1-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 2-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 4-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 6-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 8-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 10

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 7], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 13

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 5], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 16 

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 3], 1, Concat, [1]]  # cat backbone P2
  - [-1, 3, C2f, [256]]  # 19 (P2/4-xsmall)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 16], 1, Concat, [1]]  # cat head P3
  - [-1, 3, C2f, [512]]  # 22 (P3/8-xsmall)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 13], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 25 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 10], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 28 (P5/32-large)

  - [[19, 22, 25, 28], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.2 P2中期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
   n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
   s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
   m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
   l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
   x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [2, 1, Conv, [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 17-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 19-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [[5, 14], 1, Concat, [1]]  # 21 cat backbone P2
  - [[7, 16], 1, Concat, [1]]  # 22 cat backbone P3
  - [[9, 18], 1, Concat, [1]]  # 23 cat backbone P4
  - [[11, 20], 1, Concat, [1]]  # 24 cat backbone P5

  - [-1, 1, SPPF, [1024, 5]] # 25

 # YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 23], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 28

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 22], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 31

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 21], 1, Concat, [1]]  # cat backbone P2
  - [-1, 3, C2f, [128]]  # 34 (P2/4-xsmall)

  - [-1, 1, Conv, [128, 3, 2]]
  - [[-1, 31], 1, Concat, [1]]  # cat head P3
  - [-1, 3, C2f, [256]]  # 37 (P3/16-medium)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 28], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 40 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 25], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 43 (P5/32-large)

  - [[34, 37, 40, 43], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.3 P2中-后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
   n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
   s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
   m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
   l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
   x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12

  - [2, 1, Conv, [64, 3, 2]] # 13-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 14-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 16-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 18-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 20-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 22

 # YOLOv8.0n head
head:
  - [12, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 9], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 25

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 7], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 28 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 5], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [128]]  # 31 (P3/8-small)

  - [22, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 19], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 34

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 17], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 37 (P3/8-small)

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 15], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [128]]  # 40 (P3/8-small)

  - [ [ 12, 22 ], 1, Concat, [ 1 ] ]  # cat head P2  41
  - [ [ 25, 34 ], 1, Concat, [ 1 ] ]  # cat head P3  42
  - [ [ 28, 37 ], 1, Concat, [ 1 ] ]  # cat head P4  43
  - [ [ 31, 40 ], 1, Concat, [ 1 ] ]  # cat head P5  44

  - [-1, 1, Conv, [128, 3, 2]]
  - [[-1, 43], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [256]]  # 47 (P4/16-medium)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 42], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 50 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 41], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 53 (P5/32-large)

  - [[44, 47, 50, 53], 1, Detect, [nc]]  # Detect(P3, P4, P5)

4.4 P2后期融合

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 1  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
   n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
   s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
   m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
   l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
   x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12

  - [2, 1, Conv, [64, 3, 2]] # 13-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 14-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 16-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]] # 18-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]] # 20-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 22

 # YOLOv8.0n head
head:
  - [12, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 9], 1, Concat, [1] ]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 25

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[ -1, 7], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 28 

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[ -1, 5], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [128]]  # 31 (P2/4-xsmall)

  - [-1, 1, Conv, [128, 3, 2]]
  - [[-1, 28], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [256]]  # 34 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 25], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 37 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 40 (P5/32-large)

  - [22, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 19], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 43

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 17], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 46 

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 15], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 49 (P2/4-xsmall)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 46], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 52 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 43], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 55 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 22], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 58 (P5/32-large)

  - [[31, 49], 1, Concat, [1]]  # cat head P2  59
  - [[34, 52], 1, Concat, [1]]  # cat head P3  60
  - [[37, 55], 1, Concat, [1]]  # cat head P4  61
  - [[40, 58], 1, Concat, [1]]  # cat head P5  62

  - [[59, 60, 61, 62], 1, Detect, [nc]]  # Detect(P3, P4, P5)

五、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLOv8-early-p2 summary: 322 layers, 3,042,892 parameters, 3,042,876 gradients, 16.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  4                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  5                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  6                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  7                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 10                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 11                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 12             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 13                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 14                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 15             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 16                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 17                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 18             [-1, 3]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 19                  -1  1     31104  ultralytics.nn.modules.block.C2f             [96, 64, 1]
 20                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 21            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1    115456  ultralytics.nn.modules.block.C2f             [128, 128, 1]
 23                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 24            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 26                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 27            [-1, 10]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 29    [19, 22, 25, 28]  1    560596  ultralytics.nn.modules.head.Detect           [1, [64, 128, 128, 256]]
YOLOv8-early-p2 summary: 322 layers, 3,042,892 parameters, 3,042,876 gradients, 16.5 GFLOPs

中期融合结果:

YOLOv8-mid-p2 summary: 405 layers, 4,136,916 parameters, 4,136,900 gradients, 14.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 14                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 15                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 16                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 17                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
 18                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 21             [5, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22             [7, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24            [11, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1    394240  ultralytics.nn.modules.block.SPPF            [512, 256, 5]
 26                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 27            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1    164608  ultralytics.nn.modules.block.C2f             [512, 128, 1]
 29                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 30            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1     41344  ultralytics.nn.modules.block.C2f             [256, 64, 1]
 32                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 33            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1     10432  ultralytics.nn.modules.block.C2f             [128, 32, 1]
 35                  -1  1      9280  ultralytics.nn.modules.conv.Conv             [32, 32, 3, 2]
 36            [-1, 31]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  1     31104  ultralytics.nn.modules.block.C2f             [96, 64, 1]
 38                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 39            [-1, 28]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 41                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 42            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 44    [34, 37, 40, 43]  1    468404  ultralytics.nn.modules.head.Detect           [1, [32, 64, 128, 256]]
YOLOv8-mid-p2 summary: 405 layers, 4,136,916 parameters, 4,136,900 gradients, 14.5 GFLOPs

中-后期融合结果:

YOLOv8-mid-to-late-p2 summary: 464 layers, 4,391,028 parameters, 4,391,012 gradients, 17.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 14                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 15                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 16                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 17                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 18                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
 19                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 20                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 21                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 22                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 23                  12  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 24             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 26                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 27             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 29                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 30             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1      9408  ultralytics.nn.modules.block.C2f             [96, 32, 1]
 32                  22  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 33            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 35                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 36            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 38                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 39            [-1, 15]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40                  -1  1      9408  ultralytics.nn.modules.block.C2f             [96, 32, 1]
 41            [12, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42            [25, 34]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43            [28, 37]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44            [31, 40]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1     18496  ultralytics.nn.modules.conv.Conv             [64, 32, 3, 2]
 46            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47                  -1  1     35200  ultralytics.nn.modules.block.C2f             [160, 64, 1]
 48                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 49            [-1, 42]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 50                  -1  1    140032  ultralytics.nn.modules.block.C2f             [320, 128, 1]
 51                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 52            [-1, 41]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 53                  -1  1    558592  ultralytics.nn.modules.block.C2f             [640, 256, 1]
 54    [44, 47, 50, 53]  1    518932  ultralytics.nn.modules.head.Detect           [1, [64, 64, 128, 256]]
YOLOv8-mid-to-late-p2 summary: 464 layers, 4,391,028 parameters, 4,391,012 gradients, 17.5 GFLOPs

后期融合结果:

YOLOv8-late-p2 summary: 521 layers, 5,718,676 parameters, 5,718,660 gradients, 24.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 14                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 15                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 16                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 17                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 18                  -1  1     73984  ultralytics.nn.modules.conv.Conv             [64, 128, 3, 2]
 19                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 20                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 21                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 22                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 23                  12  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 24             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 26                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 27             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 29                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 30             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1      9408  ultralytics.nn.modules.block.C2f             [96, 32, 1]
 32                  -1  1      9280  ultralytics.nn.modules.conv.Conv             [32, 32, 3, 2]
 33            [-1, 28]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1     31104  ultralytics.nn.modules.block.C2f             [96, 64, 1]
 35                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 36            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 38                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 39            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 41                  22  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 42            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 44                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 45            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 47                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 48            [-1, 15]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 49                  -1  1     31104  ultralytics.nn.modules.block.C2f             [96, 64, 1]
 50                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 51            [-1, 46]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 52                  -1  1    115456  ultralytics.nn.modules.block.C2f             [128, 128, 1]
 53                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 54            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 55                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 56                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 57            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 58                  -1  1    493056  ultralytics.nn.modules.block.C2f             [384, 256, 1]
 59            [31, 49]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 60            [34, 52]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 61            [37, 55]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 62            [40, 58]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 63    [59, 60, 61, 62]  1    929396  ultralytics.nn.modules.head.Detect           [1, [96, 192, 256, 512]]
YOLOv8-late-p2 summary: 521 layers, 5,718,676 parameters, 5,718,660 gradients, 24.6 GFLOPs