学习资源站

【YOLOv12单模态融合改进】普通数据集的双模型融合改进,涉及中期,中后期,后期融合方式的完整配置步骤以及二次改进方案_yolov12多模态检测-

【YOLOv12单模态融合改进】普通数据集的双模型融合改进,涉及中期、中后期、后期融合方式的完整配置步骤以及二次改进方案

前言

主题: YOLOv12的单模态融合改进,普通数据集的双模型融合改进(双模型同步提升)

方式: 中期融合、中-后期融合、后期融合。

内容: 包含融合方式详解和完整配置步骤以及二次改进建议,通过融合多个模型的优势实现精度提升。


一、融合方式

输入的是一个模态的数据,所以没有早期的融合。

1.1 中期融合方法及结构图

定义: 在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络提取特征,融合时采用Concat操作合并特征图,送入颈部网络。

结构示意图:

1.2 中-后期融合方法及结构图

定义: 在颈部网络的上采样之后对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部的FPN网络提取特征,融合时采用Concat操作合并特征图,送入检测头。

结构示意图:

1.3 后期融合方法及结构图

定义: 在网络输出阶段(如检测头或分类器前)对多模态特征进行融合。

实现方式: 每个模态通过独立的骨干网络和颈部网络提取特征,融合时采用Concat操作合并特征图,送入检测头。

结构示意图:

二、完整配置步骤

相关的配置只涉及单模态,只需在原本的项目包中配置运行即可,不需要使用我提供的多模态项目包。

①:在 ultralytics/nn/modules/block.py 中添加如下代码,并在 __all__ 中添加 “IN”

class IN(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return x

在这里插入图片描述
②:在 ultralytics/nn/modules/__init__.py 中的 from .block import (...) 添加 IN
在这里插入图片描述
③:在 ultralytics/nn/tasks.py 中的 from ultralytics.nn.modules import (...) 中添加 IN

在这里插入图片描述
至此,添加完成。

三、YAML模型结构

此处以 ultralytics/cfg/models/v12/yolov12.yaml 为例,在同目录下创建一个用于自己数据集训练的双模型融合文件,并粘贴下方的模型训练即可。

3.1 中期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 465 layers, 2,603,056 parameters, 2,603,040 gradients, 6.7 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 465 layers, 9,285,632 parameters, 9,285,616 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 501 layers, 20,201,216 parameters, 20,201,200 gradients, 68.1 GFLOPs
  l: [1.00, 1.00, 512] # summary: 831 layers, 26,454,880 parameters, 26,454,864 gradients, 89.7 GFLOPs
  x: [1.00, 1.50, 512] # summary: 831 layers, 59,216,928 parameters, 59,216,912 gradients, 200.3 GFLOPs

# YOLO12n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]

  - [0, 1, Conv,  [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv,  [128, 3, 2]] # 2-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2]] # 4-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 6-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 8-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 9

  - [0, 1, Conv,  [64, 3, 2]] # 10-P1/2
  - [-1, 1, Conv,  [128, 3, 2]] # 11-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2]] # 13-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 15-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 17-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 18

  - [[5, 14], 1, Concat, [1]]  # 19 cat backbone P3
  - [[7, 16], 1, Concat, [1]]  # 20 cat backbone P4
  - [[9, 18], 1, Concat, [1]]  # 21 cat backbone P5

# YOLO12n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 24

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 19], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 27

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 24], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 30

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 21], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 33 (P5/32-large)

  - [[27, 30, 33], 1, Detect, [nc]] # Detect(P3, P4, P5)

3.2 中-后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 465 layers, 2,603,056 parameters, 2,603,040 gradients, 6.7 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 465 layers, 9,285,632 parameters, 9,285,616 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 501 layers, 20,201,216 parameters, 20,201,200 gradients, 68.1 GFLOPs
  l: [1.00, 1.00, 512] # summary: 831 layers, 26,454,880 parameters, 26,454,864 gradients, 89.7 GFLOPs
  x: [1.00, 1.50, 512] # summary: 831 layers, 59,216,928 parameters, 59,216,912 gradients, 200.3 GFLOPs

# YOLO12n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]

  - [0, 1, Conv,  [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv,  [128, 3, 2]] # 2-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2]] # 4-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 6-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 8-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 9

  - [0, 1, Conv,  [64, 3, 2]] # 10-P1/2
  - [-1, 1, Conv,  [128, 3, 2]] # 11-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2]] # 13-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 15-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 17-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 18

# YOLO12n head
head:
  - [9, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 21

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 24

  - [18, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 14], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 30

  - [[9, 18], 1, Concat, [1]]  # 31 cat backbone P3
  - [[21, 27], 1, Concat, [1]]  # 32 cat backbone P4
  - [[24, 30], 1, Concat, [1]]  # 33 cat backbone P5

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 32], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 36

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 31], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 39 (P5/32-large)

  - [[33, 36, 39], 1, Detect, [nc]] # Detect(P3, P4, P5)

3.3 后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 465 layers, 2,603,056 parameters, 2,603,040 gradients, 6.7 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 465 layers, 9,285,632 parameters, 9,285,616 gradients, 21.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 501 layers, 20,201,216 parameters, 20,201,200 gradients, 68.1 GFLOPs
  l: [1.00, 1.00, 512] # summary: 831 layers, 26,454,880 parameters, 26,454,864 gradients, 89.7 GFLOPs
  x: [1.00, 1.50, 512] # summary: 831 layers, 59,216,928 parameters, 59,216,912 gradients, 200.3 GFLOPs

# YOLO12n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]

  - [0, 1, Conv,  [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv,  [128, 3, 2]] # 2-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2]] # 4-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 6-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 8-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 9

  - [0, 1, Conv,  [64, 3, 2]] # 10-P1/2
  - [-1, 1, Conv,  [128, 3, 2]] # 11-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2]] # 13-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 15-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 17-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 18

# YOLO12n head
head:
  - [9, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 21

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 24

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 21], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 27

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 30 (P5/32-large)

  - [18, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 33

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 14], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 36

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 33], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 39

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 18], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 42 (P5/32-large)

  - [[24, 36], 1, Concat, [1]]  # 43 cat backbone P3
  - [[27, 39], 1, Concat, [1]]  # 44 cat backbone P4
  - [[30, 42], 1, Concat, [1]]  # 45 cat backbone P5

  - [[43, 44, 45], 1, Detect, [nc]] # Detect(P3, P4, P5)

四、成功运行结果

中期融合结果:

YOLOv12-BiBackbone summary: 710 layers, 4,052,243 parameters, 4,052,227 gradients, 10.0 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.modules.block.IN              []
  1                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  2    181120  ultralytics.nn.modules.block.A2C2f           [128, 128, 2, True, 4]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  2    689920  ultralytics.nn.modules.block.A2C2f           [256, 256, 2, True, 1]
 10                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 11                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 12                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 13                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 14                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 15                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 16                  -1  2    181120  ultralytics.nn.modules.block.A2C2f           [128, 128, 2, True, 4]
 17                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 18                  -1  2    689920  ultralytics.nn.modules.block.A2C2f           [256, 256, 2, True, 1]
 19             [5, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 20             [7, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24                  -1  1    111488  ultralytics.nn.modules.block.A2C2f           [768, 128, 1, False, -1]
 25                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26            [-1, 19]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1     28096  ultralytics.nn.modules.block.A2C2f           [384, 64, 1, False, -1]
 28                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 29            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     74624  ultralytics.nn.modules.block.A2C2f           [192, 128, 1, False, -1]
 31                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 32            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 34        [27, 30, 33]  1    430867  ultralytics.nn.modules.head.Detect           [1, [64, 128, 256]]
YOLOv12-BiBackbone summary: 710 layers, 4,052,243 parameters, 4,052,227 gradients, 10.0 GFLOPs

中-后期融合结果:

YOLOv12-BiBackbone summary: 780 layers, 4,293,907 parameters, 4,293,891 gradients, 11.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.modules.block.IN              []
  1                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  2    181120  ultralytics.nn.modules.block.A2C2f           [128, 128, 2, True, 4]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  2    689920  ultralytics.nn.modules.block.A2C2f           [256, 256, 2, True, 1]
 10                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 11                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 12                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 13                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 14                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 15                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 16                  -1  2    181120  ultralytics.nn.modules.block.A2C2f           [128, 128, 2, True, 4]
 17                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 18                  -1  2    689920  ultralytics.nn.modules.block.A2C2f           [256, 256, 2, True, 1]
 19                   9  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 20             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1     86912  ultralytics.nn.modules.block.A2C2f           [384, 128, 1, False, -1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24                  -1  1     24000  ultralytics.nn.modules.block.A2C2f           [256, 64, 1, False, -1]
 25                  18  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1     86912  ultralytics.nn.modules.block.A2C2f           [384, 128, 1, False, -1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     24000  ultralytics.nn.modules.block.A2C2f           [256, 64, 1, False, -1]
 31             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32            [21, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33            [24, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 35            [-1, 32]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     82816  ultralytics.nn.modules.block.A2C2f           [320, 128, 1, False, -1]
 37                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 38            [-1, 31]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 40        [33, 36, 39]  1    545235  ultralytics.nn.modules.head.Detect           [1, [128, 128, 256]]
YOLOv12-BiBackbone summary: 780 layers, 4,293,907 parameters, 4,293,891 gradients, 11.6 GFLOPs

后期融合结果:

YOLOv12-BiBackbone summary: 854 layers, 5,096,083 parameters, 5,096,067 gradients, 12.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.modules.block.IN              []
  1                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  2                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  2    181120  ultralytics.nn.modules.block.A2C2f           [128, 128, 2, True, 4]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  2    689920  ultralytics.nn.modules.block.A2C2f           [256, 256, 2, True, 1]
 10                   0  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 11                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 12                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 13                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 14                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 15                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 16                  -1  2    181120  ultralytics.nn.modules.block.A2C2f           [128, 128, 2, True, 4]
 17                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 18                  -1  2    689920  ultralytics.nn.modules.block.A2C2f           [256, 256, 2, True, 1]
 19                   9  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 20             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1     86912  ultralytics.nn.modules.block.A2C2f           [384, 128, 1, False, -1]
 22                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 23             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24                  -1  1     24000  ultralytics.nn.modules.block.A2C2f           [256, 64, 1, False, -1]
 25                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 26            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1     74624  ultralytics.nn.modules.block.A2C2f           [192, 128, 1, False, -1]
 28                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 29             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 31                  18  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1     86912  ultralytics.nn.modules.block.A2C2f           [384, 128, 1, False, -1]
 34                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     24000  ultralytics.nn.modules.block.A2C2f           [256, 64, 1, False, -1]
 37                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 38            [-1, 33]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1     74624  ultralytics.nn.modules.block.A2C2f           [192, 128, 1, False, -1]
 40                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 41            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 43            [24, 36]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44            [27, 39]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45            [30, 42]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46        [43, 44, 45]  1    819795  ultralytics.nn.modules.head.Detect           [1, [128, 256, 512]]
YOLOv12-BiBackbone summary: 854 layers, 5,096,083 parameters, 5,096,067 gradients, 12.6 GFLOPs

五、二次改进方案

  1. 双模型的二次改进和普通模型的改进一致,主要涉及到A2C2f、颈部结构、上采样、下采样等,可以增加或替换成其它模块,可以换成其它的颈部结构在进行融合。

  2. 两个骨干中均可以再次添加其它模块,需要注意的是融合的时候特征图大小要一致。