【RT-DETR多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题
一、本文介绍
本文记录的是利用 TFAM 模块改进 RT-DETR 的多模态融合部分 。
TFAM 模块(Temporal Fusion Attention Module,时序融合注意力模块) 通过在特征提取网络的深层 引入通道 - 空间双分支注意力机制 ,基于时序信息动态生成双模态特征融合权重。该模块 可自适应捕捉跨模态的重要特征,抑制双模态特征中的噪声干扰与无效信息,实现高层语义与低层空间特征的时序关联建模与互补融合 ,为变化检测提供跨模态的精准特征表示。
二、TFAM模块介绍
Exchanging Dual-Encoder–Decoder: A New Strategy for Change Detection With Semantic Guidance and Spatial Localization
2.1 设计出发点
当前基于深度学习的变化检测模型在进行双时相特征融合时,主要存在以下问题:
- 简单融合方法 :直接进行元素加减或拼接,易受噪声干扰,难以实现有效融合。
- 卷积增强方法 :虽通过多尺度卷积减少噪声,但忽略了双时相特征间的时序信息。
- 注意力增强方法 :通常在通道维度拼接后使用注意力机制,但同样未充分利用时序信息。
为解决上述问题,TFAM(Temporal Fusion Attention Module)模块被提出,其核心目标是 利用时序信息实现双时相特征的有效融合 ,通过对比双时相特征在时间维度上的重要性,提升特征融合的准确性和鲁棒性。
2.2 结构原理
TFAM模块通过 通道注意力 和 空间注意力 两个分支,分别在通道和空间维度上计算双时相特征的权重,进而实现特征融合。其具体结构和工作流程如下:
2.2.1 通道注意力分支
- 特征聚合 :对输入的双时相特征 T 1 T_1 T 1 和 T 2 T_2 T 2 ,分别进行全局平均池化(Avgpool)和全局最大池化(Maxpool),聚合空间信息,得到 S c = Concat ( A v g ( T 1 ) , Max ( T 1 ) , Avg ( T 2 ) , Max ( T 2 ) ) S_c = \text{Concat}(Avg(T_1), \text{Max}(T_1), \text{Avg}(T_2), \text{Max}(T_2)) S c = Concat ( A vg ( T 1 ) , Max ( T 1 ) , Avg ( T 2 ) , Max ( T 2 )) 。
-
权重计算
:通过两个1D卷积层(类似ECA模块)生成双时相的通道权重
W
c
1
W_{c1}
W
c
1
和
W
c
2
W_{c2}
W
c
2
,再经Softmax归一化,使权重和为1,公式为:
W c 1 ′ , W c 2 ′ = e W c 1 e W c 1 + e W c 2 , e W c 2 e W c 1 + e W c 2 W'_{c1}, W'_{c2} = \frac{e^{W_{c1}}}{e^{W_{c1}} + e^{W_{c2}}}, \frac{e^{W_{c2}}}{e^{W_{c1}} + e^{W_{c2}}} W c 1 ′ , W c 2 ′ = e W c 1 + e W c 2 e W c 1 , e W c 1 + e W c 2 e W c 2
该过程通过对比通道权重,确定双时相特征在通道维度上的重要部分。
2.2.2 空间注意力分支
- 权重计算 :采用与通道注意力类似的方法,对双时相特征在空间维度上进行池化和卷积操作,生成空间权重 W s 1 ′ W'_{s1} W s 1 ′ 和 W s 2 ′ W'_{s2} W s 2 ′ ,用于衡量空间位置的重要性。
2.2.3 特征融合
-
将通道权重和空间权重相加,得到双时相特征的综合权重,再与原始特征相乘并求和,公式为:
Output = ( W c 1 ′ + W s 1 ′ ) ⋅ T 1 + ( W c 2 ′ + W s 2 ′ ) ⋅ T 2 \text{Output} = (W'_{c1} + W'_{s1}) \cdot T_1 + (W'_{c2} + W'_{s2}) \cdot T_2 Output = ( W c 1 ′ + W s 1 ′ ) ⋅ T 1 + ( W c 2 ′ + W s 2 ′ ) ⋅ T 2
最终输出融合后的特征,通过权重分配保留有用信息,丢弃冗余部分。
2.3 优势
-
有效利用时序信息: 通过对比双时相特征在通道和空间维度的权重,TFAM能够 捕捉跨时相的重要特征 ,避免了传统方法中忽略时序关联的缺陷。
-
增强特征融合的准确性
- 通道与空间联合优化 :同时在两个维度上进行注意力机制计算,使模型能够从“哪里变”(空间)和“什么类型变”(通道语义)两个层面精准定位变化区域。
- 动态权重分配 :Softmax归一化确保双时相特征的权重和为1,避免了简单相加或拼接可能引入的噪声放大问题,提升了融合特征的纯净度。
-
轻量化与高效性
- 模块通过1D卷积和池化操作实现,计算复杂度低,且可嵌入到主流网络架构中(如EDED backbone),适用于实时或资源受限的场景。
- 实验表明,引入TFAM后,模型在LEVIR-CD数据集上的F1分数提升了约0.3%,验证了其有效性。
总结
TFAM模块通过 时序信息驱动的注意力机制 ,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。
三、TFAM的实现代码
TFAM
的实现代码如下:
import torch
import torch.nn as nn
import math
def kernel_size(in_channel):
"""Compute kernel size for one dimension convolution in eca-net"""
k = int((math.log2(in_channel) + 1) // 2) # parameters from ECA-net
if k % 2 == 0:
return k + 1
else:
return k
class TFAM(nn.Module):
"""Fuse two feature into one feature."""
def __init__(self, in_channel):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.k = kernel_size(in_channel)
self.channel_conv1 = nn.Conv1d(4, 1, kernel_size=self.k, padding=self.k // 2)
self.channel_conv2 = nn.Conv1d(4, 1, kernel_size=self.k, padding=self.k // 2)
self.spatial_conv1 = nn.Conv2d(4, 1, kernel_size=7, padding=3)
self.spatial_conv2 = nn.Conv2d(4, 1, kernel_size=7, padding=3)
self.softmax = nn.Softmax(0)
def forward(self, x, log=None, module_name=None, img_name=None):
t1 = x[0] # 拆分输入元组为 t1
t2 = x[1] # 拆分输入元组为 t2
# channel part
t1_channel_avg_pool = self.avg_pool(t1) # b,c,1,1
t1_channel_max_pool = self.max_pool(t1) # b,c,1,1
t2_channel_avg_pool = self.avg_pool(t2) # b,c,1,1
t2_channel_max_pool = self.max_pool(t2) # b,c,1,1
channel_pool = torch.cat([t1_channel_avg_pool, t1_channel_max_pool,
t2_channel_avg_pool, t2_channel_max_pool],
dim=2).squeeze(-1).transpose(1, 2) # b,4,c
t1_channel_attention = self.channel_conv1(channel_pool) # b,1,c
t2_channel_attention = self.channel_conv2(channel_pool) # b,1,c
channel_stack = torch.stack([t1_channel_attention, t2_channel_attention],
dim=0) # 2,b,1,c
channel_stack = self.softmax(channel_stack).transpose(-1, -2).unsqueeze(-1) # 2,b,c,1,1
# spatial part
t1_spatial_avg_pool = torch.mean(t1, dim=1, keepdim=True) # b,1,h,w
t1_spatial_max_pool = torch.max(t1, dim=1, keepdim=True)[0] # b,1,h,w
t2_spatial_avg_pool = torch.mean(t2, dim=1, keepdim=True) # b,1,h,w
t2_spatial_max_pool = torch.max(t2, dim=1, keepdim=True)[0] # b,1,h,w
spatial_pool = torch.cat([t1_spatial_avg_pool, t1_spatial_max_pool,
t2_spatial_avg_pool, t2_spatial_max_pool], dim=1) # b,4,h,w
t1_spatial_attention = self.spatial_conv1(spatial_pool) # b,1,h,w
t2_spatial_attention = self.spatial_conv2(spatial_pool) # b,1,h,w
spatial_stack = torch.stack([t1_spatial_attention, t2_spatial_attention], dim=0) # 2,b,1,h,w
spatial_stack = self.softmax(spatial_stack) # 2,b,1,h,w
# fusion part, add 1 means residual add
stack_attention = channel_stack + spatial_stack + 1 # 2,b,c,h,w
fuse = stack_attention[0] * t1 + stack_attention[1] * t2 # b,c,h,w
return fuse
四、融合步骤
4.1 修改一
① 在
ultralytics/nn/
目录下新建
AddModules
文件夹用于存放模块代码
② 在
AddModules
文件夹下新建
TFAM.py
,将
第三节
中的代码粘贴到此处
4.2 修改二
在
AddModules
文件夹下新建
__init__.py
(已有则不用新建),在文件内导入模块:
from .TFAM import *
4.3 修改三
在
ultralytics/nn/modules/tasks.py
文件中,需要在两处位置添加各模块类名称。
首先:导入模块
其次:在
parse_model函数
中注册
TFAM
模块
elif m in {TFAM}:
c2 = ch[f[0]]
args = [c2]
在
DetectionModel
类下,添加如下代码
try:
m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward on CPU
except RuntimeError:
try:
self.model.to(torch.device('cuda'))
m.stride = torch.tensor([s / x.shape[-2] for x in _forward(
torch.zeros(1, ch, s, s).to(torch.device('cuda')))]) # forward on CUDA
except RuntimeError as error:
raise error
并注释这一行
# m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))]) # forward
五、yaml模型文件
5.1 中期融合⭐
📌 此模型的修方法是将原本的中期融合中的Concat融合部分换成TFAM,融合骨干部分的多模态信息。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 7
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5
- [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 15
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5
- [[8, 16], 1, TFAM, [128]] # 19 cat backbone P3
- [[9, 17], 1, TFAM, [256]] # 20 cat backbone P4
- [[10, 18], 1, TFAM, [512]] # 21 cat backbone P5
head:
- [-1, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 22 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 24, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 25
- [20, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 26 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256, 0.5]] # 28, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 29, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 30
- [19, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 31 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 32 cat backbone P4
- [-1, 3, RepC3, [256, 0.5]] # X3 (33), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 34, downsample_convs.0
- [[-1, 29], 1, Concat, [1]] # 35 cat Y4
- [-1, 3, RepC3, [256, 0.5]] # F4 (36), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 37, downsample_convs.1
- [[-1, 24], 1, Concat, [1]] # 38 cat Y5
- [-1, 3, RepC3, [256, 0.5]] # F5 (39), pan_blocks.1
- [[33, 36, 39], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]] # Detect(P3, P4, P5)
5.2 中-后期融合⭐
📌 此模型的修方法是将原本的中-后期融合中的Concat融合部分换成TFAM,融合FPN部分的多模态信息。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 7
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5
- [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 15
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5
head:
- [10, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 21, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
- [9, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 23 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256, 0.5]] # 25, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 26, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
- [8, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 28 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 29 cat backbone P4
- [-1, 3, RepC3, [256, 0.5]] # X3 (30), fpn_blocks.1
- [18, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 31 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 33, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 34
- [17, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 35 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256, 0.5]] # 37, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 38, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 39
- [16, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 40 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 41 cat backbone P4
- [-1, 3, RepC3, [256, 0.5]] # X3 (42), fpn_blocks.1
- [[21, 33], 1, TFAM, [256]] # 43 cat backbone P3
- [[26, 38], 1, TFAM, [256]] # 44 cat backbone P4
- [[30, 42], 1, TFAM, [256]] # 45 cat backbone P5
- [-1, 1, Conv, [256, 3, 2]] # 46, downsample_convs.0
- [[-1, 44], 1, Concat, [1]] # 47 cat Y4
- [-1, 3, RepC3, [256, 0.5]] # F4 (48), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 49, downsample_convs.1
- [[-1, 43], 1, Concat, [1]] # 50 cat Y5
- [-1, 3, RepC3, [256, 0.5]] # F5 (51), pan_blocks.1
- [[45, 48, 51], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]] # Detect(P3, P4, P5)
5.3 后期融合⭐
📌 此模型的修方法是将原本的后期融合中的Concat融合部分换成TFAM,融合颈部部分的多模态信息。
# Ultralytics YOLO 🚀, AGPL-3.0 license
# RT-DETR-ResNet50 object detection model with P3-P5 outputs.
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n-cls.yaml' will call yolov8-cls.yaml with scale 'n'
# [depth, width, max_channels]
l: [1.00, 1.00, 1024]
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 3-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 4
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 5
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 6-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 7
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 8-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 9-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 10-P5
- [2, 1, ConvNormLayer, [32, 3, 2, 1, 'relu']] # 11-P1
- [-1, 1, ConvNormLayer, [32, 3, 1, 1, 'relu']] # 12
- [-1, 1, ConvNormLayer, [64, 3, 1, 1, 'relu']] # 13
- [-1, 1, nn.MaxPool2d, [3, 2, 1]] # 14-P2
- [-1, 2, Blocks, [64, BasicBlock, 2, False]] # 15
- [-1, 2, Blocks, [128, BasicBlock, 3, False]] # 16-P3
- [-1, 2, Blocks, [256, BasicBlock, 4, False]] # 17-P4
- [-1, 2, Blocks, [512, BasicBlock, 5, False]] # 18-P5
head:
- [10, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 19 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 21, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 22
- [9, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 23 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256, 0.5]] # 25, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 26, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 27
- [8, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 28 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 29 cat backbone P4
- [-1, 3, RepC3, [256, 0.5]] # X3 (30), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 31, downsample_convs.0
- [[-1, 26], 1, Concat, [1]] # 32 cat Y4
- [-1, 3, RepC3, [256, 0.5]] # F4 (33), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 34, downsample_convs.1
- [[-1, 21], 1, Concat, [1]] # 35 cat Y5
- [-1, 3, RepC3, [256, 0.5]] # F5 (36), pan_blocks.1
- [18, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 37 input_proj.2
- [-1, 1, AIFI, [1024, 8]]
- [-1, 1, Conv, [256, 1, 1]] # 39, Y5, lateral_convs.0
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 40
- [17, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 41 input_proj.1
- [[-2, -1], 1, Concat, [1]]
- [-1, 3, RepC3, [256, 0.5]] # 43, fpn_blocks.0
- [-1, 1, Conv, [256, 1, 1]] # 44, Y4, lateral_convs.1
- [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 45
- [16, 1, Conv, [256, 1, 1, None, 1, 1, False]] # 46 input_proj.0
- [[-2, -1], 1, Concat, [1]] # 47 cat backbone P4
- [-1, 3, RepC3, [256, 0.5]] # X3 (48), fpn_blocks.1
- [-1, 1, Conv, [256, 3, 2]] # 49, downsample_convs.0
- [[-1, 44], 1, Concat, [1]] # 50 cat Y4
- [-1, 3, RepC3, [256, 0.5]] # F4 (51), pan_blocks.0
- [-1, 1, Conv, [256, 3, 2]] # 52, downsample_convs.1
- [[-1, 39], 1, Concat, [1]] # 53 cat Y5
- [-1, 3, RepC3, [256, 0.5]] # F5 (54), pan_blocks.1
- [[30, 48], 1, TFAM, [256]] # 55 cat backbone P3
- [[33, 51], 1, TFAM, [256]] # 56 cat backbone P4
- [[36, 54], 1, TFAM, [256]] # 57 cat backbone P5
- [[55, 56, 57], 1, RTDETRDecoder, [nc, 256, 300, 4, 8, 3]] # Detect(P3, P4, P5)
六、成功运行结果
打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。
rtdetr-resnet18-mid-TFAM :
rtdetr-resnet18-mid-TFAM summary: 502 layers, 31,304,176 parameters, 31,304,176 gradients, 92.3 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
4 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
5 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
6 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
7 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
8 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
9 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
10 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
11 2 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
12 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
13 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
14 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
15 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
16 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
17 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
18 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
19 [8, 16] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [128]
20 [9, 17] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [256]
21 [10, 18] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [512]
22 -1 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
23 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
24 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
25 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 20 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1, None, 1, 1, False]
27 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
29 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
30 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
31 19 1 33280 ultralytics.nn.modules.conv.Conv [128, 256, 1, 1, None, 1, 1, False]
32 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
34 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
35 [-1, 29] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
37 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
38 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
40 [33, 36, 39] 1 3927956 ultralytics.nn.modules.head.RTDETRDecoder [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-TFAM summary: 502 layers, 31,304,176 parameters, 31,304,176 gradients, 92.3 GFLOPs
rtdetr-resnet18-mid-to-late-TFAM :
rtdetr-resnet18-mid-to-late-TFAM summary: 610 layers, 33,772,784 parameters, 33,772,784 gradients, 104.3 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
4 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
5 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
6 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
7 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
8 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
9 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
10 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
11 2 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
12 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
13 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
14 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
15 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
16 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
17 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
18 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
19 10 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
21 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
22 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
23 9 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1, None, 1, 1, False]
24 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
26 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
27 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
28 8 1 33280 ultralytics.nn.modules.conv.Conv [128, 256, 1, 1, None, 1, 1, False]
29 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
31 18 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
32 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
33 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
34 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
35 17 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1, None, 1, 1, False]
36 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
37 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
38 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
39 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
40 16 1 33280 ultralytics.nn.modules.conv.Conv [128, 256, 1, 1, None, 1, 1, False]
41 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
42 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
43 [21, 33] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [256]
44 [26, 38] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [256]
45 [30, 42] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [256]
46 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
47 [-1, 44] 1 0 ultralytics.nn.modules.conv.Concat [1]
48 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
49 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
50 [-1, 43] 1 0 ultralytics.nn.modules.conv.Concat [1]
51 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
52 [45, 48, 51] 1 3927956 ultralytics.nn.modules.head.RTDETRDecoder [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-mid-to-late-TFAM summary: 610 layers, 33,772,784 parameters, 33,772,784 gradients, 104.3 GFLOPs
rtdetr-resnet18-late-TFAM :
rtdetr-resnet18-late-TFAM summary: 694 layers, 36,269,296 parameters, 36,269,296 gradients, 109.3 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
4 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
5 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
6 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
7 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
8 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
9 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
10 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
11 2 1 960 ultralytics.nn.AddModules.ResNet.ConvNormLayer[3, 32, 3, 2, 1, 'relu']
12 -1 1 9312 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 32, 3, 1, 1, 'relu']
13 -1 1 18624 ultralytics.nn.AddModules.ResNet.ConvNormLayer[32, 64, 3, 1, 1, 'relu']
14 -1 1 0 torch.nn.modules.pooling.MaxPool2d [3, 2, 1]
15 -1 2 152512 ultralytics.nn.AddModules.ResNet.Blocks [64, 64, 2, 'BasicBlock', 2, False]
16 -1 2 526208 ultralytics.nn.AddModules.ResNet.Blocks [64, 128, 2, 'BasicBlock', 3, False]
17 -1 2 2100992 ultralytics.nn.AddModules.ResNet.Blocks [128, 256, 2, 'BasicBlock', 4, False]
18 -1 2 8396288 ultralytics.nn.AddModules.ResNet.Blocks [256, 512, 2, 'BasicBlock', 5, False]
19 10 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
20 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
21 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
22 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
23 9 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1, None, 1, 1, False]
24 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
25 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
26 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
27 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
28 8 1 33280 ultralytics.nn.modules.conv.Conv [128, 256, 1, 1, None, 1, 1, False]
29 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
31 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
32 [-1, 26] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
34 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
35 [-1, 21] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
37 18 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1, None, 1, 1, False]
38 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
39 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
40 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
41 17 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1, None, 1, 1, False]
42 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
43 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
44 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
45 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
46 16 1 33280 ultralytics.nn.modules.conv.Conv [128, 256, 1, 1, None, 1, 1, False]
47 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
48 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
49 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
50 [-1, 44] 1 0 ultralytics.nn.modules.conv.Concat [1]
51 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
52 -1 1 590336 ultralytics.nn.modules.conv.Conv [256, 256, 3, 2]
53 [-1, 39] 1 0 ultralytics.nn.modules.conv.Concat [1]
54 -1 3 657920 ultralytics.nn.modules.block.RepC3 [512, 256, 3, 0.5]
55 [30, 48] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [256]
56 [33, 51] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [256]
57 [36, 54] 1 436 ultralytics.nn.AddModules.TFAM.TFAM [256]
58 [55, 56, 57] 1 3927956 ultralytics.nn.modules.head.RTDETRDecoder [9, [256, 256, 256], 256, 300, 4, 8, 3]
rtdetr-resnet18-late-TFAM summary: 694 layers, 36,269,296 parameters, 36,269,296 gradients, 109.3 GFLOPs