学习资源站

【YOLOv10多模态融合改进】_改进双HS-FPN颈部结构-高级筛选特征融合金字塔,加强不同模态间的细微特征检测-

【YOLOv10多模态融合改进】| 改进 双HS-FPN颈部结构:高级筛选特征融合金字塔,加强不同模态间的细微特征检测

一、本文介绍

本文改进 双HS-FPN颈部结构,融合YOLOv10中的多模态特征,以优化目标检测网络模型

HS-FPN 借助 通道注意力机制 及独特的 多尺度融合策略 ,有效应对 目标尺寸差异及特征稀缺问题 。针对不同模态,其 利用高级特征筛选低级特征 ,增强特征表达,助力模型精准定位和识别目标, 减少因尺度变化及特征不足导致的检测误差 ,提升 YOLOv10 在多模态检测任务中的准确性与稳定性。



二、HS-FPN介绍

Accurate Leukocyte Detection Based on Deformable-DETR and Multi-Level Feature Fusion for Aiding Diagnosis of Blood Diseases

HS - FPN结构 特征选择模块 特征融合模块 组成。

  • 特征选择模块中, CA模块 先处理输入 特征图 ,经 池化 激活函数 确定各通道权重以 过滤特征图 DM模块 再对不同尺度特征图降维;
  • 特征融合模块中,利用 SFF机制 以高级特征为权重筛选低级特征语义信息后融合 ,提升模型检测能力。

2.1 出发点

在白细胞数据集中,白细胞识别任务面临多尺度问题,不同类型白细胞直径通常有差异,相同白细胞在不同显微镜下成像大小也会不同,这使得模型难以准确识别白细胞,所以需要设计HS - FPN来实现多尺度特征融合,帮助模型捕捉更全面的白细胞特征信息。

2.2 结构原理

  • 特征选择模块 :由 CA模块 DM模块 组成。对于输入特征图 f i n ∈ R C × H × W f_{in } \in R^{C ×H ×W} f in R C × H × W CA模块 先进行 全局平均池化 和全 局最大池化 ,再结合结果,经 Sigmoid激活函数 确定各通道权重 f C A ∈ R C × 1 × 1 f_{C A} \in R^{C ×1 ×1} f C A R C × 1 × 1 ,通过与对应尺度特征图相乘得到过滤后的特征图。因不同尺度特征图通道数不同, DM模块 用1×1卷积将各尺度特征图通道数降为 256。

  • 特征融合模块 :骨干网络生成的多尺度特征图中, 高级特征语义信息丰富但目标定位粗糙,低级特征定位精确但语义信息有限 。传统直接像素求和融合有缺陷,研究中的 SFF模块 以高级特征为权重筛选低级特征中的关键语义信息 。对于输入高级特征 f h i g h ∈ R C × H × W f_{high } \in R^{C ×H ×W} f hi g h R C × H × W 和低级特征 f l o w ∈ R C × H 1 × W 1 f_{low } \in R^{C ×H_{1} ×W_{1}} f l o w R C × H 1 × W 1 ,先对高级特征用步长为2、卷积核为3 x3的 转置卷积 扩展,再用 双线性插值 统一维度得到 f a t t ∈ R C × H 1 × W 1 f_{att } \in R^{C ×H_{1} ×W_{1}} f a tt R C × H 1 × W 1 ,经 CA 模块 将高级特征转为注意力权重过滤低级特征,最后融合得到 f o u t ∈ R C × H 1 × W 1 f_{out } \in R^{C ×H_{1} ×W_{1}} f o u t R C × H 1 × W 1 ,其融合过程公式为 f a t t = B L ( T − C o n v ( f h i g h ) ) f_{att }=B L\left(T - Conv\left(f_{high }\right)\right) f a tt = B L ( T C o n v ( f hi g h ) ) f o u t = f l o w ∗ C A ( f a t t ) + f a t t f_{out }=f_{low } * C A\left(f_{att }\right)+f_{att } f o u t = f l o w C A ( f a tt ) + f a tt

在这里插入图片描述

2.3 作用

HS-FPN 能够利用通道注意力模块,以 高级语义特征为权重过滤低级特征 ,并将筛选后的特征与高级特征逐点相加,实现多尺度特征融合,从而提高模型的特征表达能力,有助于检测到细微特征,增强模型的检测能力。

论文: https://www.sciencedirect.com/science/article/abs/pii/S0010482524000015
源码: https://github.com/JustlfC03/MFDS-DETR

三、HS-FPN的实现代码

HS-FPN模块 的实现代码如下:

import torch
import torch.nn as nn

class ChannelAttention_HSFPN(nn.Module):
    def __init__(self, in_planes, ratio=4, flag=True):
        super(ChannelAttention_HSFPN, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.conv1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
        self.relu = nn.ReLU()
        self.conv2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
        self.flag = flag
        self.sigmoid = nn.Sigmoid()

        nn.init.xavier_uniform_(self.conv1.weight)
        nn.init.xavier_uniform_(self.conv2.weight)

    def forward(self, x):
        avg_out = self.conv2(self.relu(self.conv1(self.avg_pool(x))))
        max_out = self.conv2(self.relu(self.conv1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out) * x if self.flag else self.sigmoid(out)

class Multiply(nn.Module):
    def __init__(self) -> None:
        super().__init__()

    def forward(self, x):
        return x[0] * x[1]

class Add_HSFPN(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        return torch.sum(torch.stack(x, dim=0), dim=0)

四、添加步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 HSFPN.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .HSFPN import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

然后,在 parse_model函数 中添加 nn.Conv2d ChannelAttention_HSFPN Multiply Add_HSFPN

在这里插入图片描述

 elif m is ChannelAttention_HSFPN:
     c2 = ch[f]
     args = [c2, *args]
 elif m is Multiply:
     c2 = ch[f[0]]
 elif m is Add_HSFPN:
     c2 = ch[f[-1]]

在这里插入图片描述


五、yaml模型文件

5.1 中期融合⭐

📌 此模型的修方法是将颈部网络换成HSFPN结构。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [2, 1, Conv, [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 17-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 19-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [[7, 16], 1, Concat, [1]]  # 21 cat backbone P3
  - [[9, 18], 1, Concat, [1]]  # 22 cat backbone P4
  - [[11, 20], 1, Concat, [1]]  # 23 cat backbone P5

  - [-1, 1, SPPF, [1024, 5]] # 24
  - [-1, 1, PSA, [1024]] # 25

# YOLOv10.0n head
head:
  - [25, 1, ChannelAttention_HSFPN, [4]] # 26
  - [-1, 1, nn.Conv2d, [256, 1]] # 27
  - [-1, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 28

  - [22, 1, ChannelAttention_HSFPN, [4]] # 29
  - [-1, 1, nn.Conv2d, [256, 1]] # 30
  - [28, 1, ChannelAttention_HSFPN, [4, False]] # 31
  - [[-1, -2], 1, Multiply, []] # 32
  - [[-1, 28], 1, Add_HSFPN, []] # 33
  - [-1, 3, C2fCIB, [256, 1, True]] # 34 P4/16

  - [28, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 35
  - [21, 1, ChannelAttention_HSFPN, [4]] # 36
  - [-1, 1, nn.Conv2d, [256, 1]] # 37
  - [35, 1, ChannelAttention_HSFPN, [4, False]] # 38
  - [[-1, -2], 1, Multiply, []] # 39
  - [[-1, 35], 1, Add_HSFPN, []] # 40
  - [-1, 3, C2fCIB, [256, 1, True]] # 41 P3/16

  - [[27, 34, 41], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

5.2 后期融合⭐

📌 此模型的修方法是将两个模态的颈部网络换成HSFPN结构,融合颈部部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12
  - [-1, 1, PSA, [1024]] # 13

  - [2, 1, Conv, [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 19-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 21-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 23
  - [-1, 1, PSA, [1024]] # 24

# YOLOv10.0n head
head:
  - [13, 1, ChannelAttention_HSFPN, [4]] # 25
  - [-1, 1, nn.Conv2d, [256, 1]] # 26
  - [-1, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 27

  - [9, 1, ChannelAttention_HSFPN, [4]] # 28
  - [-1, 1, nn.Conv2d, [256, 1]] # 29
  - [27, 1, ChannelAttention_HSFPN, [4, False]] # 30
  - [[-1, -2], 1, Multiply, []] # 31
  - [[-1, 27], 1, Add_HSFPN, []] # 32
  - [-1, 3, C2fCIB, [256, 1, True]] # 33 P4/16

  - [27, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 34
  - [7, 1, ChannelAttention_HSFPN, [4]] # 35
  - [-1, 1, nn.Conv2d, [256, 1]] # 36
  - [34, 1, ChannelAttention_HSFPN, [4, False]] # 37
  - [[-1, -2], 1, Multiply, []] # 38
  - [[-1, 34], 1, Add_HSFPN, []] # 39
  - [-1, 3, C2fCIB, [256, 1, True]] # 40 P3/16

  - [24, 1, ChannelAttention_HSFPN, [4]] # 41
  - [-1, 1, nn.Conv2d, [256, 1]] # 42
  - [-1, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 43

  - [20, 1, ChannelAttention_HSFPN, [4]] # 44
  - [-1, 1, nn.Conv2d, [256, 1]] # 45
  - [43, 1, ChannelAttention_HSFPN, [4, False]] # 46
  - [[-1, -2], 1, Multiply, []] # 47
  - [[-1, 43], 1, Add_HSFPN, []] # 48
  - [-1, 3, C2fCIB, [256, 1, True]] # 49 P4/16

  - [43, 1, nn.ConvTranspose2d, [256, 3, 2, 1, 1]] # 50
  - [18, 1, ChannelAttention_HSFPN, [4]] # 51
  - [-1, 1, nn.Conv2d, [256, 1]] # 52
  - [50, 1, ChannelAttention_HSFPN, [4, False]] # 53
  - [[-1, -2], 1, Multiply, []] # 54
  - [[-1, 50], 1, Add_HSFPN, []] # 55
  - [-1, 3, C2fCIB, [256, 1, True]] # 56 P3/16

  - [[26, 42], 1, Concat, [1]]  # 57 cat backbone P3
  - [[33, 49], 1, Concat, [1]]  # 58 cat backbone P4
  - [[40, 56], 1, Concat, [1]]  # 59 cat backbone P5

  - [[57, 58, 59], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


六、成功运行结果

打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。

YOLOv10n-mid-HSFPN

YOLOv10n-mid-HSFPN summary: 504 layers, 2,973,302 parameters, 2,973,286 gradients, 10.3 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 14                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 15                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 16                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 17                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 18                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 19                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 20                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 21             [7, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23            [11, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24                  -1  1    394240  ultralytics.nn.modules.block.SPPF            [512, 256, 5]
 25                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 26                  25  1     32768  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4]
 27                  -1  1     16448  torch.nn.modules.conv.Conv2d                 [256, 64, 1]
 28                  -1  1     36928  torch.nn.modules.conv.ConvTranspose2d        [64, 64, 3, 2, 1, 1]
 29                  22  1     32768  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4]
 30                  -1  1     16448  torch.nn.modules.conv.Conv2d                 [256, 64, 1]
 31                  28  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4, False]
 32            [-1, -2]  1         0  ultralytics.nn.AddModules.HSFPN.Multiply     []
 33            [-1, 28]  1         0  ultralytics.nn.AddModules.HSFPN.Add_HSFPN    []
 34                  -1  1     19456  ultralytics.nn.modules.block.C2fCIB          [64, 64, 1, 1, True]
 35                  28  1     36928  torch.nn.modules.conv.ConvTranspose2d        [64, 64, 3, 2, 1, 1]
 36                  21  1      8192  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[128, 4]
 37                  -1  1      8256  torch.nn.modules.conv.Conv2d                 [128, 64, 1]
 38                  35  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4, False]
 39            [-1, -2]  1         0  ultralytics.nn.AddModules.HSFPN.Multiply     []
 40            [-1, 35]  1         0  ultralytics.nn.AddModules.HSFPN.Add_HSFPN    []
 41                  -1  1     19456  ultralytics.nn.modules.block.C2fCIB          [64, 64, 1, 1, True]
 42        [27, 34, 41]  1    528406  ultralytics.nn.modules.head.v10Detect        [1, [64, 64, 64]]
YOLOv10n-mid-HSFPN summary: 504 layers, 2,973,302 parameters, 2,973,286 gradients, 10.3 GFLOPs

YOLOv10n-late-HSFPN

YOLOv10n-late-HSFPN summary: 648 layers, 3,682,742 parameters, 3,682,726 gradients, 13.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 17                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 18                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 19                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 20                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 21                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 22                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 23                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 24                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 25                  13  1     32768  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4]
 26                  -1  1     16448  torch.nn.modules.conv.Conv2d                 [256, 64, 1]
 27                  -1  1     36928  torch.nn.modules.conv.ConvTranspose2d        [64, 64, 3, 2, 1, 1]
 28                   9  1      8192  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[128, 4]
 29                  -1  1      8256  torch.nn.modules.conv.Conv2d                 [128, 64, 1]
 30                  27  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4, False]
 31            [-1, -2]  1         0  ultralytics.nn.AddModules.HSFPN.Multiply     []
 32            [-1, 27]  1         0  ultralytics.nn.AddModules.HSFPN.Add_HSFPN    []
 33                  -1  1     19456  ultralytics.nn.modules.block.C2fCIB          [64, 64, 1, 1, True]
 34                  27  1     36928  torch.nn.modules.conv.ConvTranspose2d        [64, 64, 3, 2, 1, 1]
 35                   7  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4]
 36                  -1  1      4160  torch.nn.modules.conv.Conv2d                 [64, 64, 1]
 37                  34  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4, False]
 38            [-1, -2]  1         0  ultralytics.nn.AddModules.HSFPN.Multiply     []
 39            [-1, 34]  1         0  ultralytics.nn.AddModules.HSFPN.Add_HSFPN    []
 40                  -1  1     19456  ultralytics.nn.modules.block.C2fCIB          [64, 64, 1, 1, True]
 41                  24  1     32768  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[256, 4]
 42                  -1  1     16448  torch.nn.modules.conv.Conv2d                 [256, 64, 1]
 43                  -1  1     36928  torch.nn.modules.conv.ConvTranspose2d        [64, 64, 3, 2, 1, 1]
 44                  20  1      8192  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[128, 4]
 45                  -1  1      8256  torch.nn.modules.conv.Conv2d                 [128, 64, 1]
 46                  43  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4, False]
 47            [-1, -2]  1         0  ultralytics.nn.AddModules.HSFPN.Multiply     []
 48            [-1, 43]  1         0  ultralytics.nn.AddModules.HSFPN.Add_HSFPN    []
 49                  -1  1     19456  ultralytics.nn.modules.block.C2fCIB          [64, 64, 1, 1, True]
 50                  43  1     36928  torch.nn.modules.conv.ConvTranspose2d        [64, 64, 3, 2, 1, 1]
 51                  18  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4]
 52                  -1  1      4160  torch.nn.modules.conv.Conv2d                 [64, 64, 1]
 53                  50  1      2048  ultralytics.nn.AddModules.HSFPN.ChannelAttention_HSFPN[64, 4, False]
 54            [-1, -2]  1         0  ultralytics.nn.AddModules.HSFPN.Multiply     []
 55            [-1, 50]  1         0  ultralytics.nn.AddModules.HSFPN.Add_HSFPN    []
 56                  -1  1     19456  ultralytics.nn.modules.block.C2fCIB          [64, 64, 1, 1, True]
 57            [26, 42]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 58            [33, 49]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 59            [40, 56]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 60        [57, 58, 59]  1    907414  ultralytics.nn.modules.head.v10Detect        [1, [128, 128, 128]]
YOLOv10n-late-HSFPN summary: 648 layers, 3,682,742 parameters, 3,682,726 gradients, 13.5 GFLOPs