学习资源站

【YOLOv10多模态融合改进】_TFAM-时序融合注意力模块_引入通道-空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题_yolo加时序-

【YOLOv10多模态融合改进】| TFAM:时序融合注意力模块 | 引入通道 - 空间双分支注意力机制,解决双模态特征融合中时序关联不足的问题

一、本文介绍

本文记录的是利用 TFAM 模块改进 YOLOv10 的多模态融合部分

TFAM 模块(Temporal Fusion Attention Module,时序融合注意力模块) 通过在特征提取网络的深层 引入通道 - 空间双分支注意力机制 ,基于时序信息动态生成双模态特征融合权重。该模块 可自适应捕捉跨模态的重要特征,抑制双模态特征中的噪声干扰与无效信息,实现高层语义与低层空间特征的时序关联建模与互补融合 ,为变化检测提供跨模态的精准特征表示。



二、TFAM模块介绍

Exchanging Dual-Encoder–Decoder: A New Strategy for Change Detection With Semantic Guidance and Spatial Localization

2.1 设计出发点

当前基于深度学习的变化检测模型在进行双时相特征融合时,主要存在以下问题:

  • 简单融合方法 :直接进行元素加减或拼接,易受噪声干扰,难以实现有效融合。
  • 卷积增强方法 :虽通过多尺度卷积减少噪声,但忽略了双时相特征间的时序信息。
  • 注意力增强方法 :通常在通道维度拼接后使用注意力机制,但同样未充分利用时序信息。

为解决上述问题,TFAM(Temporal Fusion Attention Module)模块被提出,其核心目标是 利用时序信息实现双时相特征的有效融合 ,通过对比双时相特征在时间维度上的重要性,提升特征融合的准确性和鲁棒性。

2.2 结构原理

TFAM模块通过 通道注意力 空间注意力 两个分支,分别在通道和空间维度上计算双时相特征的权重,进而实现特征融合。其具体结构和工作流程如下:

在这里插入图片描述

2.2.1 通道注意力分支

  • 特征聚合 :对输入的双时相特征 T 1 T_1 T 1 T 2 T_2 T 2 ,分别进行全局平均池化(Avgpool)和全局最大池化(Maxpool),聚合空间信息,得到 S c = Concat ( A v g ( T 1 ) , Max ( T 1 ) , Avg ( T 2 ) , Max ( T 2 ) ) S_c = \text{Concat}(Avg(T_1), \text{Max}(T_1), \text{Avg}(T_2), \text{Max}(T_2)) S c = Concat ( A vg ( T 1 ) , Max ( T 1 ) , Avg ( T 2 ) , Max ( T 2 ))
  • 权重计算 :通过两个1D卷积层(类似ECA模块)生成双时相的通道权重 W c 1 W_{c1} W c 1 W c 2 W_{c2} W c 2 ,再经Softmax归一化,使权重和为1,公式为:
    W c 1 ′ , W c 2 ′ = e W c 1 e W c 1 + e W c 2 , e W c 2 e W c 1 + e W c 2 W'_{c1}, W'_{c2} = \frac{e^{W_{c1}}}{e^{W_{c1}} + e^{W_{c2}}}, \frac{e^{W_{c2}}}{e^{W_{c1}} + e^{W_{c2}}} W c 1 , W c 2 = e W c 1 + e W c 2 e W c 1 , e W c 1 + e W c 2 e W c 2
    该过程通过对比通道权重,确定双时相特征在通道维度上的重要部分。

2.2.2 空间注意力分支

  • 权重计算 :采用与通道注意力类似的方法,对双时相特征在空间维度上进行池化和卷积操作,生成空间权重 W s 1 ′ W'_{s1} W s 1 W s 2 ′ W'_{s2} W s 2 ,用于衡量空间位置的重要性。

2.2.3 特征融合

  • 将通道权重和空间权重相加,得到双时相特征的综合权重,再与原始特征相乘并求和,公式为:
    Output = ( W c 1 ′ + W s 1 ′ ) ⋅ T 1 + ( W c 2 ′ + W s 2 ′ ) ⋅ T 2 \text{Output} = (W'_{c1} + W'_{s1}) \cdot T_1 + (W'_{c2} + W'_{s2}) \cdot T_2 Output = ( W c 1 + W s 1 ) T 1 + ( W c 2 + W s 2 ) T 2
    最终输出融合后的特征,通过权重分配保留有用信息,丢弃冗余部分。

2.3 优势

  1. 有效利用时序信息: 通过对比双时相特征在通道和空间维度的权重,TFAM能够 捕捉跨时相的重要特征 ,避免了传统方法中忽略时序关联的缺陷。

  2. 增强特征融合的准确性

    • 通道与空间联合优化 :同时在两个维度上进行注意力机制计算,使模型能够从“哪里变”(空间)和“什么类型变”(通道语义)两个层面精准定位变化区域。
    • 动态权重分配 :Softmax归一化确保双时相特征的权重和为1,避免了简单相加或拼接可能引入的噪声放大问题,提升了融合特征的纯净度。
  3. 轻量化与高效性

    • 模块通过1D卷积和池化操作实现,计算复杂度低,且可嵌入到主流网络架构中(如EDED backbone),适用于实时或资源受限的场景。
    • 实验表明,引入TFAM后,模型在LEVIR-CD数据集上的F1分数提升了约0.3%,验证了其有效性。

总结

TFAM模块通过 时序信息驱动的注意力机制 ,解决了双时相特征融合中时序关联不足的问题,实现了更精准的变化区域定位和特征表示。其结构轻量、泛化性强,为变化检测任务提供了一种高效的特征融合解决方案。

论文: https://ieeexplore.ieee.org/document/10296953

三、TFAM的实现代码

TFAM 的实现代码如下:

import torch
import torch.nn as nn
import math

def kernel_size(in_channel):
    """Compute kernel size for one dimension convolution in eca-net"""
    k = int((math.log2(in_channel) + 1) // 2)  # parameters from ECA-net
    if k % 2 == 0:
        return k + 1
    else:
        return k

class TFAM(nn.Module):
    """Fuse two feature into one feature."""

    def __init__(self, in_channel):
        super().__init__()

        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)
        self.k = kernel_size(in_channel)
        self.channel_conv1 = nn.Conv1d(4, 1, kernel_size=self.k, padding=self.k // 2)
        self.channel_conv2 = nn.Conv1d(4, 1, kernel_size=self.k, padding=self.k // 2)
        self.spatial_conv1 = nn.Conv2d(4, 1, kernel_size=7, padding=3)
        self.spatial_conv2 = nn.Conv2d(4, 1, kernel_size=7, padding=3)
        self.softmax = nn.Softmax(0)

    def forward(self, x, log=None, module_name=None, img_name=None):
        t1 = x[0]  # 拆分输入元组为 t1
        t2 = x[1]  # 拆分输入元组为 t2
        # channel part
        t1_channel_avg_pool = self.avg_pool(t1)  # b,c,1,1
        t1_channel_max_pool = self.max_pool(t1)  # b,c,1,1
        t2_channel_avg_pool = self.avg_pool(t2)  # b,c,1,1
        t2_channel_max_pool = self.max_pool(t2)  # b,c,1,1

        channel_pool = torch.cat([t1_channel_avg_pool, t1_channel_max_pool,
                                  t2_channel_avg_pool, t2_channel_max_pool],
                                 dim=2).squeeze(-1).transpose(1, 2)  # b,4,c
        t1_channel_attention = self.channel_conv1(channel_pool)  # b,1,c
        t2_channel_attention = self.channel_conv2(channel_pool)  # b,1,c
        channel_stack = torch.stack([t1_channel_attention, t2_channel_attention],
                                    dim=0)  # 2,b,1,c
        channel_stack = self.softmax(channel_stack).transpose(-1, -2).unsqueeze(-1)  # 2,b,c,1,1

        # spatial part
        t1_spatial_avg_pool = torch.mean(t1, dim=1, keepdim=True)  # b,1,h,w
        t1_spatial_max_pool = torch.max(t1, dim=1, keepdim=True)[0]  # b,1,h,w
        t2_spatial_avg_pool = torch.mean(t2, dim=1, keepdim=True)  # b,1,h,w
        t2_spatial_max_pool = torch.max(t2, dim=1, keepdim=True)[0]  # b,1,h,w
        spatial_pool = torch.cat([t1_spatial_avg_pool, t1_spatial_max_pool,
                                  t2_spatial_avg_pool, t2_spatial_max_pool], dim=1)  # b,4,h,w
        t1_spatial_attention = self.spatial_conv1(spatial_pool)  # b,1,h,w
        t2_spatial_attention = self.spatial_conv2(spatial_pool)  # b,1,h,w
        spatial_stack = torch.stack([t1_spatial_attention, t2_spatial_attention], dim=0)  # 2,b,1,h,w
        spatial_stack = self.softmax(spatial_stack)  # 2,b,1,h,w

        # fusion part, add 1 means residual add
        stack_attention = channel_stack + spatial_stack + 1  # 2,b,c,h,w
        fuse = stack_attention[0] * t1 + stack_attention[1] * t2  # b,c,h,w

        return fuse

四、融合步骤

4.1 修改一

① 在 ultralytics/nn/ 目录下新建 AddModules 文件夹用于存放模块代码

② 在 AddModules 文件夹下新建 TFAM.py ,将 第三节 中的代码粘贴到此处

在这里插入图片描述

4.2 修改二

AddModules 文件夹下新建 __init__.py (已有则不用新建),在文件内导入模块: from .TFAM import *

在这里插入图片描述

4.3 修改三

ultralytics/nn/modules/tasks.py 文件中,需要在两处位置添加各模块类名称。

首先:导入模块

在这里插入图片描述

其次:在 parse_model函数 中注册 TFAM 模块

在这里插入图片描述

        elif m in {TFAM}:
            c2 = ch[f[0]]
            args = [c2]

在这里插入图片描述

DetectionModel 类下,添加如下代码

try:
   m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))])  # forward on CPU
except RuntimeError:
   try:
       self.model.to(torch.device('cuda'))
       m.stride = torch.tensor([s / x.shape[-2] for x in _forward(
           torch.zeros(1, ch, s, s).to(torch.device('cuda')))])  # forward on CUDA
   except RuntimeError as error:
       raise error

并注释这一行

# m.stride = torch.tensor([s / x.shape[-2] for x in _forward(torch.zeros(1, ch, s, s))])  # forward

在这里插入图片描述


五、yaml模型文件

5.1 中期融合⭐

📌 此模型的修方法是将原本的中期融合中的Concat融合部分换成TFAM,融合骨干部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [2, 1, Conv, [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 17-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 19-P5/32
  - [-1, 3, C2f, [1024, True]]

  - [[7, 16], 1, TFAM, [256]]  # 21 cat backbone P3
  - [[9, 18], 1, TFAM, [512]]  # 22 cat backbone P4
  - [[11, 20], 1, TFAM, [1024]]  # 23 cat backbone P5

  - [-1, 1, SPPF, [1024, 5]] # 24
  - [-1, 1, PSA, [1024]] # 25

# YOLOv10.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 28

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 21], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 31 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 28], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 34 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 25], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 37 (P5/32-large)

  - [[31, 34, 37], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

5.2 中-后期融合⭐

📌 此模型的修方法是将原本的中-后期融合中的Concat融合部分换成TFAM,融合FPN部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12
  - [-1, 1, PSA, [1024]] # 13

  - [2, 1, Conv, [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 19-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 21-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 23
  - [-1, 1, PSA, [1024]] # 24

# YOLOv10.0n head
head:
  - [13, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 30 (P3/8-small)

  - [24, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 33

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 36 (P3/8-small)

  - [[13, 24], 1, TFAM, [1024]]  # 37 cat backbone P3
  - [[27, 33], 1, TFAM, [512]]  # 38 cat backbone P4
  - [[30, 36], 1, TFAM, [256]]  # 39 cat backbone P5

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 38], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 42 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 37], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 45 (P5/32-large)

  - [[39, 42, 45], 1, v10Detect, [nc]] # Detect(P3, P4, P5)

5.3 后期融合⭐

📌 此模型的修方法是将原本的后期融合中的Concat融合部分换成TFAM,融合颈部部分的多模态信息。

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv10 object detection model. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov10n.yaml' will call yolov10.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]

backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv, [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 8-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 10-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 12
  - [-1, 1, PSA, [1024]] # 13

  - [2, 1, Conv, [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, SCDown, [512, 3, 2]] # 19-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, SCDown, [1024, 3, 2]] # 21-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]] # 23
  - [-1, 1, PSA, [1024]] # 24

# YOLOv10.0n head
head:
  - [13, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 30 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 27], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 33 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 36 (P5/32-large)

  - [24, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P4
  - [-1, 3, C2f, [512]] # 39

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P3
  - [-1, 3, C2f, [256]] # 42 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 39], 1, Concat, [1]] # cat head P4
  - [-1, 3, C2f, [512]] # 45 (P4/16-medium)

  - [-1, 1, SCDown, [512, 3, 2]]
  - [[-1, 24], 1, Concat, [1]] # cat head P5
  - [-1, 3, C2fCIB, [1024, True, True]] # 48 (P5/32-large)

  - [[30, 42], 1, TFAM, [256]]  # 49 cat backbone P3
  - [[33, 45], 1, TFAM, [512]]  # 50 cat backbone P4
  - [[36, 48], 1, TFAM, [1024]]  # 51 cat backbone P5

  - [[49, 50, 51], 1, v10Detect, [nc]] # Detect(P3, P4, P5)


六、成功运行结果

打印网络模型可以看到不同的融合层已经加入到模型中,并可以进行训练了。

YOLOv10n-mid-TFAM

YOLOv10n-mid-TFAM summary: 511 layers, 3,493,314 parameters, 3,493,298 gradients, 11.2 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 14                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 15                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 16                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 17                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 18                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 19                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 20                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 21             [7, 16]  1       420  ultralytics.nn.AddModules.TFAM.TFAM          [64]
 22             [9, 18]  1       436  ultralytics.nn.AddModules.TFAM.TFAM          [128]
 23            [11, 20]  1       436  ultralytics.nn.AddModules.TFAM.TFAM          [256]
 24                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 25                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 26                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 27            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 29                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 30            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 32                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 33            [-1, 28]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 35                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 36            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 38        [31, 34, 37]  1    861718  ultralytics.nn.modules.head.v10Detect        [1, [64, 128, 256]]
YOLOv10n-mid-TFAM summary: 511 layers, 3,493,314 parameters, 3,493,298 gradients, 11.2 GFLOPs

YOLOv10n-mid-to-late-TFAM

YOLOv10n-mid-to-late-TFAM summary: 581 layers, 4,093,122 parameters, 4,093,106 gradients, 12.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 17                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 18                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 19                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 20                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 21                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 22                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 23                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 24                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 25                  13  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 31                  24  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 34                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 37            [13, 24]  1       436  ultralytics.nn.AddModules.TFAM.TFAM          [256]
 38            [27, 33]  1       436  ultralytics.nn.AddModules.TFAM.TFAM          [128]
 39            [30, 36]  1       420  ultralytics.nn.AddModules.TFAM.TFAM          [64]
 40                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 41            [-1, 38]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 43                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 44            [-1, 37]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 46        [39, 42, 45]  1    861718  ultralytics.nn.modules.head.v10Detect        [1, [64, 128, 256]]
YOLOv10n-mid-to-late-TFAM summary: 581 layers, 4,093,122 parameters, 4,093,106 gradients, 12.5 GFLOPs

YOLOv10n-late-TFAM

YOLOv10n-late-TFAM summary: 641 layers, 4,554,434 parameters, 4,554,418 gradients, 13.3 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
  5                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
  6                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
  7                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
  8                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
  9                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 10                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 11                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 12                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 13                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      4672  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2]
 16                  -1  1      7360  ultralytics.nn.modules.block.C2f             [32, 32, 1, True]
 17                  -1  1     18560  ultralytics.nn.modules.conv.Conv             [32, 64, 3, 2]
 18                  -1  2     49664  ultralytics.nn.modules.block.C2f             [64, 64, 2, True]
 19                  -1  1      9856  ultralytics.nn.modules.block.SCDown          [64, 128, 3, 2]
 20                  -1  2    197632  ultralytics.nn.modules.block.C2f             [128, 128, 2, True]
 21                  -1  1     36096  ultralytics.nn.modules.block.SCDown          [128, 256, 3, 2]
 22                  -1  1    460288  ultralytics.nn.modules.block.C2f             [256, 256, 1, True]
 23                  -1  1    164608  ultralytics.nn.modules.block.SPPF            [256, 256, 5]
 24                  -1  1    249728  ultralytics.nn.modules.block.PSA             [256, 256]
 25                  13  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 31                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 32            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 34                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 35            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 37                  24  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 38            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1    148224  ultralytics.nn.modules.block.C2f             [384, 128, 1]
 40                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 41            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1     37248  ultralytics.nn.modules.block.C2f             [192, 64, 1]
 43                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 44            [-1, 39]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    123648  ultralytics.nn.modules.block.C2f             [192, 128, 1]
 46                  -1  1     18048  ultralytics.nn.modules.block.SCDown          [128, 128, 3, 2]
 47            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  1    282624  ultralytics.nn.modules.block.C2fCIB          [384, 256, 1, True, True]
 49            [30, 42]  1       420  ultralytics.nn.AddModules.TFAM.TFAM          [64]
 50            [33, 45]  1       436  ultralytics.nn.AddModules.TFAM.TFAM          [128]
 51            [36, 48]  1       436  ultralytics.nn.AddModules.TFAM.TFAM          [256]
 52        [49, 50, 51]  1    861718  ultralytics.nn.modules.head.v10Detect        [1, [64, 128, 256]]
YOLOv10n-late-TFAM summary: 641 layers, 4,554,434 parameters, 4,554,418 gradients, 13.3 GFLOPs