学习资源站

【YOLOv12多模态融合改进】在前期,中期,中后期,后期多模态融合中添加P2小目标检测层,完整步骤及代码_yolo12改进代码-

【YOLOv12多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P2小目标检测层,完整步骤及代码

前言

主题: YOLOv12 的多模态融合改进中增加P2小目标检测层

方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P2多模态融合检测层。

内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。


一、YOLOv12原始模型结构介绍

YOLOv12 原始模型结构如下:

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv,  [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 1-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 3-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 5-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 7-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 8

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 11

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 14

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 17

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 8], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)

  - [[14, 17, 20], 1, Detect, [nc]] # Detect(P3, P4, P5)

二、有效特征层对应的检测头类别

2.1 P3/8 - small检测头

  • 原始模型中的 P3/8特征层 对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
  • 适合检测尺寸大概在 8x8 32x32 像素左右的目标。

2.2 P4/16 - medium检测头

  • 这个检测头对应的 P4/16特征层 经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
  • 它主要用于检测中等大小的目标,尺寸范围大概在 32x32 64x64 像素左右。

2.3 P5/32 - large检测头

  • P5/32 是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
  • 该检测头适合检测较大尺寸的目标,一般是尺寸在 64x64像素以上 的目标。

2.4 新添加针对小目标的检测头

  • 新添加的检测头主要用于检测更小尺寸的目标。尺寸在 4x4 8x8 像素左右的微小目标。

💡这是因为在目标检测任务中,随着目标尺寸的减小,需要更高分辨率的特征图来有效捕捉目标特征。新添加的检测头很可能是基于这样的考虑,通过一系列的卷积、上采样和拼接等操作生成适合微小目标检测的特征图,从而提高模型对微小目标的检测能力。

三、小目标检测头多模态融合方式

  1. 前期融合中,在网络输入阶段将多模态数据合并后,增加针对小目标的检测层。

  2. 中期融合中,在骨干网络中增加针对P2的多模态特征进行融合,以此引出小目标的检测层。

  3. 中-后期融合中,在颈部的FPN结构中,增加针对P2的多模态特征进行融合,以此引出小目标的检测层。

  4. 后期融合中,在检测头前增加P2多模态特征进行融合。

四、完整配置步骤

!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

4.1 P2前期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0
  - [-1, 1, Conv,  [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 2-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 4-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 6-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 8-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 9

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 12

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 15

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 3], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 18

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 15], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [256, False, -1]] # 21

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 24

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 27 (P5/32-large)

  - [[18, 21, 24, 27], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.2 P2中期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

  - [[5, 14], 1, Concat, [1]]  # 21 cat backbone P3
  - [[7, 16], 1, Concat, [1]]  # 22 cat backbone P3
  - [[9, 18], 1, Concat, [1]]  # 23 cat backbone P4
  - [[11, 20], 1, Concat, [1]]  # 24 cat backbone P5

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 23], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 30

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 21], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 33

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 30], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [256, False, -1]] # 36

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 27], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 39

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 24], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 42 (P5/32-large)

  - [[33, 36, 39, 42], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.3 P2中-后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

# YOLO12 head
head:
  - [11, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 23

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 26

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 29

  - [20, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 32

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 35

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 14], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 38

  - [[11, 20], 1, Concat, [1]]  # cat head P5  39
  - [[23, 32], 1, Concat, [1]]  # cat head P5  40
  - [[26, 35], 1, Concat, [1]]  # cat head P5  41
  - [[29, 38], 1, Concat, [1]]  # cat head P5  42

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 41], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [256, False, -1]] # 45

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 40], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 48

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 39], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 51 (P5/32-large)

  - [[42, 45, 48, 51], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.4 P2后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

  - [2, 1, Conv,  [64, 3, 2]] # 12-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 13-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 15-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 17-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 19-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 20

# YOLO12 head
head:
  - [11, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 23

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 26

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 29

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 26], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [256, False, -1]] # 32

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 23], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 35

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 38 (P5/32-large)

  - [20, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 41

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 16], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 44

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 14], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 47

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 44], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [256, False, -1]] # 50

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 41], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 53

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 20], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 56 (P5/32-large)

  - [[29, 47], 1, Concat, [1]]  # cat head P5  57
  - [[32, 50], 1, Concat, [1]]  # cat head P5  58
  - [[35, 53], 1, Concat, [1]]  # cat head P5  59
  - [[38, 56], 1, Concat, [1]]  # cat head P5  60

  - [[57, 58, 59, 60], 1, Detect, [nc]] # Detect(P3, P4, P5)

五、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLOv12-early-p2 summary: 575 layers, 2,705,500 parameters, 2,705,484 gradients, 13.1 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
  8                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
  9                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 10                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 11             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 12                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 13                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 14             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 15                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 16                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 17             [-1, 3]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 18                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 19                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 20            [-1, 15]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 21                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 22                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 23            [-1, 12]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 25                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 26             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 28    [18, 21, 24, 27]  1    518932  ultralytics.nn.modules.head.Detect           [1, [64, 64, 128, 256]]
YOLOv12-early-p2 summary: 575 layers, 2,705,500 parameters, 2,705,484 gradients, 13.1 GFLOPs

中期融合结果:

YOLOv12-mid-p2 summary: 810 layers, 4,157,716 parameters, 4,157,700 gradients, 15.5 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21             [5, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 22             [7, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23             [9, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 24            [11, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 25                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    111488  ultralytics.nn.AddModules.A2C2f.A2C2f        [768, 128, 1, False, -1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     28096  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 64, 1, False, -1]
 31                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32            [-1, 21]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1     21952  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 64, 1, False, -1]
 34                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 35            [-1, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 37                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 38            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 40                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 41            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 43    [33, 36, 39, 42]  1    518932  ultralytics.nn.modules.head.Detect           [1, [64, 64, 128, 256]]
YOLOv12-mid-p2 summary: 810 layers, 4,157,716 parameters, 4,157,700 gradients, 15.5 GFLOPs

中-后期融合结果:

YOLOv12-mid-to-late-p2 summary: 915 layers, 4,436,692 parameters, 4,436,676 gradients, 21.0 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21                  11  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 22             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 24                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 25             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 30                  20  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 31            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 33                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 34            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 36                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 37            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 39            [11, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40            [23, 32]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41            [26, 35]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42            [29, 38]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 44            [-1, 41]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1     21952  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 64, 1, False, -1]
 46                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 47            [-1, 40]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 49                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 50            [-1, 39]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 52    [42, 45, 48, 51]  1    650708  ultralytics.nn.modules.head.Detect           [1, [128, 64, 128, 256]]
YOLOv12-mid-to-late-p2 summary: 915 layers, 4,436,692 parameters, 4,436,676 gradients, 21.0 GFLOPs

后期融合结果:

YOLOv12-late-p2 summary: 1,026 layers, 5,339,476 parameters, 5,339,460 gradients, 23.0 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 13                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 14                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 15                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 16                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 17                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 18                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 19                  -1  1    295424  ultralytics.nn.modules.conv.Conv             [128, 256, 3, 2]
 20                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 21                  11  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 22             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 24                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 25             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 27                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 28             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 30                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 31            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 32                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 33                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 34            [-1, 23]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 35                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 36                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 37            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 38                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 39                  20  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 40            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 41                  -1  1     86912  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 128, 1, False, -1]
 42                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 43            [-1, 16]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 45                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 46            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 48                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 49            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 50                  -1  1     19904  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 64, 1, False, -1]
 51                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 52            [-1, 41]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 53                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 54                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 55            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 56                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 57            [29, 47]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 58            [32, 50]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 59            [35, 53]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 60            [38, 56]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 61    [57, 58, 59, 60]  1    971028  ultralytics.nn.modules.head.Detect           [1, [128, 128, 256, 512]]
YOLOv12-late-p2 summary: 1,026 layers, 5,339,476 parameters, 5,339,460 gradients, 23.0 GFLOPs