【YOLOv11多模态融合改进】(可见光+红外)涉及前期、中期、中后期、后期融合方式的完整配置步骤以及二次改进方案
前言
主题: YOLOv11的多模态融合改进
方式: 前期融合、中期融合、中-后期融合、后期融合。
内容: 包含融合方式详解和完整的项目包和配置步骤以及二次改进建议,开箱即用,一键运行。
一、融合方式
1.1 前期融合方法及结构图
定义: 在网络输入阶段将多模态数据直接合并,形成统一的特征表示。
实现方式: 将 RGB(3 通道)与红外(3 通道)图像直接拼接为 6 通道输入,以保留原始模态的细节信息。
结构示意图:
1.2 中期融合方法及结构图
定义: 在网络中间层(骨干网络与颈部网络之间)对多模态特征进行融合。
实现方式: 每个模态通过独立的骨干网络提取特征,融合时采用Concat操作合并特征图,送入颈部网络。
结构示意图:
1.3 中-后期融合方法及结构图
定义: 在颈部网络的上采样之后对多模态特征进行融合。
实现方式: 每个模态通过独立的骨干网络和颈部的FPN网络提取特征,融合时采用Concat操作合并特征图,送入检测头。
结构示意图:
1.4 后期融合方法及结构图
定义: 在网络输出阶段(如检测头或分类器前)对多模态特征进行融合。
实现方式: 每个模态通过独立的骨干网络和颈部网络提取特征,融合时采用Concat操作合并特征图,送入检测头。
结构示意图:
二、完整配置步骤
!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程
在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。
除了模型结构方面的改动,在yaml文件中还传入了一个通道数
ch: 6
表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。
2.1 前期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, MF, [64]] # 0-P1/2
- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 2-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 4-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 6-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 8-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 10
- [-1, 2, C2PSA, [1024]] # 11
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 14
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 5], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 14], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 11], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 23 (P5/32-large)
- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
2.2 中期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [2, 1, Conv, [64, 3, 2]] # 12-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 13-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 15-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 17-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 19-P5/32
- [-1, 2, C3k2, [1024, True]]
- [[7, 16], 1, Concat, [1]] # 21 cat backbone P3
- [[9, 18], 1, Concat, [1]] # 22 cat backbone P4
- [[11, 20], 1, Concat, [1]] # 23 cat backbone P5
- [-1, 1, SPPF, [1024, 5]] # 24
- [-1, 2, C2PSA, [1024]] # 25
# YOLO11n head
head:
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 22], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 28
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 21], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 31 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 28], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 34 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 25], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 37 (P5/32-large)
- [[31, 34, 37], 1, Detect, [nc]] # Detect(P3, P4, P5)
2.3 中-后期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [-1, 2, C2PSA, [1024]] # 13
- [2, 1, Conv, [64, 3, 2]] # 14-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 21-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 23
- [-1, 2, C2PSA, [1024]] # 24
# YOLO11n head
head:
- [13, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 9], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 27
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 30 (P3/8-small)
- [24, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 20], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 33
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 18], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 36 (P3/8-small)
- [[13, 24], 1, Concat, [1]] # 37 cat backbone P3
- [[27, 33], 1, Concat, [1]] # 38 cat backbone P4
- [[30, 36], 1, Concat, [1]] # 39 cat backbone P5
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 38], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 42 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 37], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 45 (P5/32-large)
- [[39, 42, 45], 1, Detect, [nc]] # Detect(P3, P4, P5)
2.4 后期融合
# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'
# [depth, width, max_channels]
n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPs
s: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPs
m: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPs
l: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPs
x: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs
# YOLO11n backbone
backbone:
# [from, repeats, module, args]
- [-1, 1, IN, []] # 0
- [-1, 1, Multiin, [1]] # 1
- [-2, 1, Multiin, [2]] # 2
- [1, 1, Conv, [64, 3, 2]] # 3-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 4-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 6-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 8-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 10-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 12
- [-1, 2, C2PSA, [1024]] # 13
- [2, 1, Conv, [64, 3, 2]] # 14-P1/2
- [-1, 1, Conv, [128, 3, 2]] # 15-P2/4
- [-1, 2, C3k2, [256, False, 0.25]]
- [-1, 1, Conv, [256, 3, 2]] # 17-P3/8
- [-1, 2, C3k2, [512, False, 0.25]]
- [-1, 1, Conv, [512, 3, 2]] # 19-P4/16
- [-1, 2, C3k2, [512, True]]
- [-1, 1, Conv, [1024, 3, 2]] # 21-P5/32
- [-1, 2, C3k2, [1024, True]]
- [-1, 1, SPPF, [1024, 5]] # 23
- [-1, 2, C2PSA, [1024]] # 24
# YOLO11n head
head:
- [13, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 9], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 27
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 7], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 30 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 27], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 33 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 13], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 36 (P5/32-large)
- [24, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 20], 1, Concat, [1]] # cat backbone P4
- [-1, 2, C3k2, [512, False]] # 39
- [-1, 1, nn.Upsample, [None, 2, "nearest"]]
- [[-1, 18], 1, Concat, [1]] # cat backbone P3
- [-1, 2, C3k2, [256, False]] # 42 (P3/8-small)
- [-1, 1, Conv, [256, 3, 2]]
- [[-1, 39], 1, Concat, [1]] # cat head P4
- [-1, 2, C3k2, [512, False]] # 45 (P4/16-medium)
- [-1, 1, Conv, [512, 3, 2]]
- [[-1, 24], 1, Concat, [1]] # cat head P5
- [-1, 2, C3k2, [1024, True]] # 48 (P5/32-large)
- [[30, 42], 1, Concat, [1]] # cat head P5 49
- [[33, 45], 1, Concat, [1]] # cat head P5 50
- [[36, 48], 1, Concat, [1]] # cat head P5 51
- [[49, 50, 51], 1, Detect, [nc]] # Detect(P3, P4, P5)
三、成功运行结果
前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。
YOLO11-earlyfusion summary: 332 layers, 2,592,379 parameters, 2,592,363 gradients, 7.2 GFLOPs
from n params module arguments
0 -1 1 472 ultralytics.nn.AddModules.multimodal.MF [6, 16]
1 -1 1 2336 ultralytics.nn.modules.conv.Conv [16, 16, 3, 2]
2 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
3 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
4 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
5 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
6 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
7 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
8 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
9 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
10 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
11 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
12 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
13 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
14 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 5] 1 0 ultralytics.nn.modules.conv.Concat [1]
17 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
18 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
19 [-1, 14] 1 0 ultralytics.nn.modules.conv.Concat [1]
20 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
21 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
22 [-1, 11] 1 0 ultralytics.nn.modules.conv.Concat [1]
23 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
24 [17, 20, 23] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLO11-earlyfusion summary: 332 layers, 2,592,379 parameters, 2,592,363 gradients, 7.2 GFLOPs
中期融合结果:
YOLO11-midfusion summary: 436 layers, 3,795,379 parameters, 3,795,363 gradients, 9.6 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
13 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
14 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
15 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
16 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
17 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
18 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
19 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
20 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
21 [7, 16] 1 0 ultralytics.nn.modules.conv.Concat [1]
22 [9, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
23 [11, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
24 -1 1 394240 ultralytics.nn.modules.block.SPPF [512, 256, 5]
25 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
26 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
27 [-1, 22] 1 0 ultralytics.nn.modules.conv.Concat [1]
28 -1 1 127680 ultralytics.nn.modules.block.C3k2 [512, 128, 1, False]
29 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
30 [-1, 21] 1 0 ultralytics.nn.modules.conv.Concat [1]
31 -1 1 40288 ultralytics.nn.modules.block.C3k2 [384, 64, 1, False]
32 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
33 [-1, 28] 1 0 ultralytics.nn.modules.conv.Concat [1]
34 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
35 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
36 [-1, 25] 1 0 ultralytics.nn.modules.conv.Concat [1]
37 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
38 [31, 34, 37] 1 430867 ultralytics.nn.modules.head.Detect [1, [64, 128, 256]]
YOLO11-midfusion summary: 436 layers, 3,795,379 parameters, 3,795,363 gradients, 9.6 GFLOPs
中-后期融合结果:
YOLO11-mid-to-late-fusion summary: 508 layers, 4,332,051 parameters, 4,332,035 gradients, 11.5 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
14 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
15 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
16 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
21 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
22 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
23 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
24 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
25 13 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
28 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
29 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
31 24 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
32 [-1, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
34 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
35 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
37 [13, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
38 [27, 33] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 [30, 36] 1 0 ultralytics.nn.modules.conv.Concat [1]
40 -1 1 73856 ultralytics.nn.modules.conv.Conv [128, 64, 3, 2]
41 [-1, 38] 1 0 ultralytics.nn.modules.conv.Concat [1]
42 -1 1 103104 ultralytics.nn.modules.block.C3k2 [320, 128, 1, False]
43 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
44 [-1, 37] 1 0 ultralytics.nn.modules.conv.Concat [1]
45 -1 1 444416 ultralytics.nn.modules.block.C3k2 [640, 256, 1, True]
46 [39, 42, 45] 1 545235 ultralytics.nn.modules.head.Detect [1, [128, 128, 256]]
YOLO11-mid-to-late-fusion summary: 508 layers, 4,332,051 parameters, 4,332,035 gradients, 11.5 GFLOPs
后期融合结果:
YOLO11-latefusion summary: 564 layers, 5,138,131 parameters, 5,138,115 gradients, 12.5 GFLOPs
from n params module arguments
0 -1 1 0 ultralytics.nn.AddModules.multimodal.IN []
1 -1 1 0 ultralytics.nn.AddModules.multimodal.Multiin [1]
2 -2 1 0 ultralytics.nn.AddModules.multimodal.Multiin [2]
3 1 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
4 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
5 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
6 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
7 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
8 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
9 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
10 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
11 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
12 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
13 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
14 2 1 464 ultralytics.nn.modules.conv.Conv [3, 16, 3, 2]
15 -1 1 4672 ultralytics.nn.modules.conv.Conv [16, 32, 3, 2]
16 -1 1 6640 ultralytics.nn.modules.block.C3k2 [32, 64, 1, False, 0.25]
17 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
18 -1 1 26080 ultralytics.nn.modules.block.C3k2 [64, 128, 1, False, 0.25]
19 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
20 -1 1 87040 ultralytics.nn.modules.block.C3k2 [128, 128, 1, True]
21 -1 1 295424 ultralytics.nn.modules.conv.Conv [128, 256, 3, 2]
22 -1 1 346112 ultralytics.nn.modules.block.C3k2 [256, 256, 1, True]
23 -1 1 164608 ultralytics.nn.modules.block.SPPF [256, 256, 5]
24 -1 1 249728 ultralytics.nn.modules.block.C2PSA [256, 256, 1]
25 13 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
26 [-1, 9] 1 0 ultralytics.nn.modules.conv.Concat [1]
27 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
28 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
29 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
30 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
31 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
32 [-1, 27] 1 0 ultralytics.nn.modules.conv.Concat [1]
33 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
34 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
35 [-1, 13] 1 0 ultralytics.nn.modules.conv.Concat [1]
36 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
37 24 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
38 [-1, 20] 1 0 ultralytics.nn.modules.conv.Concat [1]
39 -1 1 111296 ultralytics.nn.modules.block.C3k2 [384, 128, 1, False]
40 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
41 [-1, 18] 1 0 ultralytics.nn.modules.conv.Concat [1]
42 -1 1 32096 ultralytics.nn.modules.block.C3k2 [256, 64, 1, False]
43 -1 1 36992 ultralytics.nn.modules.conv.Conv [64, 64, 3, 2]
44 [-1, 39] 1 0 ultralytics.nn.modules.conv.Concat [1]
45 -1 1 86720 ultralytics.nn.modules.block.C3k2 [192, 128, 1, False]
46 -1 1 147712 ultralytics.nn.modules.conv.Conv [128, 128, 3, 2]
47 [-1, 24] 1 0 ultralytics.nn.modules.conv.Concat [1]
48 -1 1 378880 ultralytics.nn.modules.block.C3k2 [384, 256, 1, True]
49 [30, 42] 1 0 ultralytics.nn.modules.conv.Concat [1]
50 [33, 45] 1 0 ultralytics.nn.modules.conv.Concat [1]
51 [36, 48] 1 0 ultralytics.nn.modules.conv.Concat [1]
52 [49, 50, 51] 1 819795 ultralytics.nn.modules.head.Detect [1, [128, 256, 512]]
YOLO11-latefusion summary: 564 layers, 5,138,131 parameters, 5,138,115 gradients, 12.5 GFLOPs
四、二次改进方案
-
多模态模型的二次改进和普通模型的改进一致,主要涉及到C3k2、颈部结构、上采样、下采样等,可以增加或替换成其它模块,可以换成其它的颈部结构在进行融合。若有需要可查看主页的模块改进专栏。
-
两个骨干中均可以再次添加其它模块,需要注意的是融合的时候层数要对应上,即两层的特征图大小要一致。