学习资源站

【YOLOv12多模态融合改进】在前期,中期,中后期,后期多模态融合中添加P6大目标检测层,完整步骤及代码_yolo模型融合-

【YOLOv12多模态融合改进】在前期、中期、中后期、后期多模态融合中添加P6大目标检测层,完整步骤及代码

前言

主题: YOLOv12 的多模态融合改进中增加P6大目标检测层

方式: 分别在前期融合、中期融合、中-后期融合、后期融合中增加P6多模态融合检测层。

内容: 包含融合方式详解以及完整配置步骤,开箱即用,一键运行。


一、YOLOv12原始模型结构介绍

YOLOv12 原始模型结构如下:

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv,  [64, 3, 2]] # 0-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 1-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 3-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 5-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 7-P5/32
  - [-1, 4, A2C2f, [1024, True, 1]] # 8

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 6], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [512, False, -1]] # 11

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 4], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 14

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 17

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 8], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 20 (P5/32-large)

  - [[14, 17, 20], 1, Detect, [nc]] # Detect(P3, P4, P5)

二、有效特征层对应的检测头类别

2.1 P3/8 - small检测头

  • 原始模型中的 P3/8特征层 对应的检测头主要用于检测相对较小的目标。其特征图大小相对较大,空间分辨率较高。
  • 适合检测尺寸大概在 8x8 16x16 像素左右的目标。

2.2 P4/16 - medium检测头

  • 这个检测头对应的 P4/16特征层 经过了更多的下采样操作,相比P3/8特征图空间分辨率降低,但通道数增加,特征更抽象且有语义信息。
  • 它主要用于检测中等大小的目标,尺寸范围大概在 16x16 32x32 像素左右。

2.3 P5/32 - large检测头

  • P5/32 是经过最多下采样操作得到的特征层,其空间分辨率最低,但语义信息最强、全局感受野最大。
  • 该检测头适合检测较大尺寸的目标,一般是尺寸在 32x32 像素以上的目标。

2.4 新添加针对大目标的检测头

  • 新添加的检测头主要用于检测更大尺寸的目标。尺寸在 64x64 像素以上的超大目标。

💡这是因为在目标检测任务中,随着目标尺寸的增大,需要更能关注到整体轮廓的特征图来有效捕捉大目标特征。

三、P6检测层的多模态融合方式

  1. 前期融合中,在网络输入阶段将多模态数据合并后,增加针对大目标的检测层。

  2. 中期融合中,在骨干网络中增加针对P6的多模态特征进行融合,以此引出大目标的检测层。

  3. 中-后期融合中,在颈部的FPN结构中,增加针对P6的多模态特征进行融合,以此引出大目标的检测层。

  4. 后期融合中,在检测头前增加P6多模态特征进行融合。

四、完整配置步骤

!!! 私信获取的项目包就已经把相关的多模态输入、训练等改动都已经配好了,只需要新建模型yaml文件,粘贴对应的模型,进行训练即可。 项目包获取及使用教程可参考链接: 《YOLO系列模型的多模态项目》配置使用教程

在什么地方新建,n,s,m,l,x,用哪个版本按自己的需求来即可,和普通的训练步骤一致。

除了模型结构方面的改动,在yaml文件中还传入了一个通道数 ch: 6 表示传入的是双模态,6通道 ,前三个是可见光,后三个是红外。
在default.yaml中也配置了这个参数。

4.1 P6前期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, MF, [64]]  # 0
  - [-1, 1, Conv,  [64, 3, 2]] # 1-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 2-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 4-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 6-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [768, 3, 2]] # 8-P5/32
  - [-1, 4, A2C2f, [768, True, 1]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 10-P6/64
  - [-1, 4, A2C2f, [1024, True, 1]] # 11

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [768, False, -1]] # 14

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [512, False, -1]] # 17

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 5], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 20

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 17], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 23

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 14], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [768, False, -1]] # 26

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 11], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 29 (P5/32-large)

  - [[20, 23, 26, 29], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.2 P6中期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [768, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [768, True, 1]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 12-P6/64
  - [-1, 4, A2C2f, [1024, True, 1]] # 13

  - [2, 1, Conv,  [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 15-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 17-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 19-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [768, 3, 2]] # 21-P5/32
  - [-1, 4, A2C2f, [768, True, 1]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 23-P6/64
  - [-1, 4, A2C2f, [1024, True, 1]] # 24

  - [[7, 18], 1, Concat, [1]]  # 25 cat backbone P2
  - [[9, 20], 1, Concat, [1]]  # 26 cat backbone P3
  - [[11, 22], 1, Concat, [1]]  # 27 cat backbone P4
  - [[13, 24], 1, Concat, [1]]  # 28 cat backbone P5

# YOLO12 head
head:
  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 27], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [768, False, -1]] # 31

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 26], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [512, False, -1]] # 34

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 25], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 37

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 34], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 40

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 31], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [768, False, -1]] # 43

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 28], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 46 (P5/32-large)

  - [[37, 40, 43, 46], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.3 P6中-后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [768, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [768, True, 1]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 12-P6/64
  - [-1, 4, A2C2f, [1024, True, 1]] # 13

  - [2, 1, Conv,  [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 15-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 17-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 19-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [768, 3, 2]] # 21-P5/32
  - [-1, 4, A2C2f, [768, True, 1]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 23-P6/64
  - [-1, 4, A2C2f, [1024, True, 1]] # 24

# YOLO12 head
head:
  - [13, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 11], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [768, False, -1]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [512, False, -1]] # 30

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 33

  - [24, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [768, False, -1]] # 36

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [512, False, -1]] # 39

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 42

  - [[13, 24], 1, Concat, [1]]  # cat head P2  43
  - [[27, 36], 1, Concat, [1]]  # cat head P3  44
  - [[30, 39], 1, Concat, [1]]  # cat head P4  45
  - [[33, 42], 1, Concat, [1]]  # cat head P5  46

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 45], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 49

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 44], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [768, False, -1]] # 52

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 43], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 55 (P5/32-large)

  - [[46, 49, 52, 55], 1, Detect, [nc]] # Detect(P3, P4, P5)

4.4 P6后期融合

# YOLOv12 🚀, AGPL-3.0 license
# YOLOv12 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect
# CFG file for YOLOv12-turbo

# Parameters
ch: 6
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov12n.yaml' will call yolov12.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.50, 0.25, 1024] # summary: 497 layers, 2,553,904 parameters, 2,553,888 gradients, 6.2 GFLOPs
  s: [0.50, 0.50, 1024] # summary: 497 layers, 9,127,424 parameters, 9,127,408 gradients, 19.7 GFLOPs
  m: [0.50, 1.00, 512] # summary: 533 layers, 19,670,784 parameters, 19,670,768 gradients, 60.4 GFLOPs
  l: [1.00, 1.00, 512] # summary: 895 layers, 26,506,496 parameters, 26,506,480 gradients, 83.3 GFLOPs
  x: [1.00, 1.50, 512] # summary: 895 layers, 59,414,176 parameters, 59,414,160 gradients, 185.9 GFLOPs

# YOLO12 backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, IN, []]  # 0
  - [-1, 1, Multiin, [1]]  # 1
  - [-2, 1, Multiin, [2]]  # 2

  - [1, 1, Conv,  [64, 3, 2]] # 3-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 4-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 6-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 8-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [768, 3, 2]] # 10-P5/32
  - [-1, 4, A2C2f, [768, True, 1]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 12-P6/64
  - [-1, 4, A2C2f, [1024, True, 1]] # 13

  - [2, 1, Conv,  [64, 3, 2]] # 14-P1/2
  - [-1, 1, Conv,  [128, 3, 2, 1, 2]] # 15-P2/4
  - [-1, 2, C3k2,  [256, False, 0.25]]
  - [-1, 1, Conv,  [256, 3, 2, 1, 4]] # 17-P3/8
  - [-1, 2, C3k2,  [512, False, 0.25]]
  - [-1, 1, Conv,  [512, 3, 2]] # 19-P4/16
  - [-1, 4, A2C2f, [512, True, 4]]
  - [-1, 1, Conv,  [768, 3, 2]] # 21-P5/32
  - [-1, 4, A2C2f, [768, True, 1]]
  - [-1, 1, Conv,  [1024, 3, 2]] # 23-P6/64
  - [-1, 4, A2C2f, [1024, True, 1]] # 24

# YOLO12 head
head:
  - [13, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 11], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [768, False, -1]] # 27

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 9], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [512, False, -1]] # 30

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 7], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 33

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 30], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 36

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 27], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [768, False, -1]] # 39

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 13], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 42 (P5/32-large)

  - [24, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 22], 1, Concat, [1]] # cat backbone P4
  - [-1, 2, A2C2f, [768, False, -1]] # 45

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 20], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [512, False, -1]] # 48

  - [-1, 1, nn.Upsample, [None, 2, "nearest"]]
  - [[-1, 18], 1, Concat, [1]] # cat backbone P3
  - [-1, 2, A2C2f, [256, False, -1]] # 51

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 48], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [512, False, -1]] # 54

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 45], 1, Concat, [1]] # cat head P4
  - [-1, 2, A2C2f, [768, False, -1]] # 57

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 24], 1, Concat, [1]] # cat head P5
  - [-1, 2, C3k2, [1024, True]] # 60 (P5/32-large)

  - [[33, 51], 1, Concat, [1]]  # cat head P2  61
  - [[36, 54], 1, Concat, [1]]  # cat head P3  62
  - [[39, 57], 1, Concat, [1]]  # cat head P4  63
  - [[42, 60], 1, Concat, [1]]  # cat head P5  64

  - [[61, 62, 63, 64], 1, Detect, [nc]] # Detect(P3, P4, P5)

五、成功运行结果

前期融合结果: 可以看到输入的通道数为6,表明可见光图像和红外图像均输入到了模型中进行融合训练。

YOLOv12-early-p6 summary: 676 layers, 3,965,468 parameters, 3,965,452 gradients, 6.7 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1       472  ultralytics.nn.AddModules.multimodal.MF      [6, 16]
  1                  -1  1      2336  ultralytics.nn.modules.conv.Conv             [16, 16, 3, 2]
  2                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  3                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  4                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  5                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  6                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  7                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
  8                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
  9                  -1  2    394176  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 192, 2, True, 1]
 10                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 11                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 12                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 13             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 14                  -1  1    182592  ultralytics.nn.AddModules.A2C2f.A2C2f        [448, 192, 1, False, -1]
 15                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 16             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 17                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 18                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 19             [-1, 5]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 20                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 21                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 22            [-1, 17]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 23                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 24                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 25            [-1, 14]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26                  -1  1    164160  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 192, 1, False, -1]
 27                  -1  1    221440  ultralytics.nn.modules.conv.Conv             [192, 128, 3, 2]
 28            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 30    [20, 23, 26, 29]  1    602260  ultralytics.nn.modules.head.Detect           [1, [64, 128, 192, 256]]
YOLOv12-early-p6 summary: 676 layers, 3,965,468 parameters, 3,965,452 gradients, 6.7 GFLOPs

中期融合结果:

YOLOv12-mid-p6 summary: 1,012 layers, 6,205,460 parameters, 6,205,444 gradients, 8.9 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  2    394176  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 192, 2, True, 1]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 16                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 17                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 18                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 21                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 22                  -1  2    394176  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 192, 2, True, 1]
 23                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 24                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 25             [7, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 26             [9, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27            [11, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 28            [13, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 29                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 30            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 31                  -1  1    225600  ultralytics.nn.AddModules.A2C2f.A2C2f        [896, 192, 1, False, -1]
 32                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 33            [-1, 26]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 34                  -1  1     91008  ultralytics.nn.AddModules.A2C2f.A2C2f        [448, 128, 1, False, -1]
 35                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 36            [-1, 25]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 37                  -1  1     28096  ultralytics.nn.AddModules.A2C2f.A2C2f        [384, 64, 1, False, -1]
 38                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 39            [-1, 34]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 40                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 41                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 42            [-1, 31]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 43                  -1  1    164160  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 192, 1, False, -1]
 44                  -1  1    221440  ultralytics.nn.modules.conv.Conv             [192, 128, 3, 2]
 45            [-1, 28]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 47    [37, 40, 43, 46]  1    602260  ultralytics.nn.modules.head.Detect           [1, [64, 128, 192, 256]]
YOLOv12-mid-p6 summary: 1,012 layers, 6,205,460 parameters, 6,205,444 gradients, 8.9 GFLOPs

中-后期融合结果:

YOLOv12-mid-to-late-p6 summary: 1,117 layers, 6,643,028 parameters, 6,643,012 gradients, 10.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  2    394176  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 192, 2, True, 1]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 16                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 17                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 18                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 21                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 22                  -1  2    394176  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 192, 2, True, 1]
 23                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 24                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 25                  13  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    182592  ultralytics.nn.AddModules.A2C2f.A2C2f        [448, 192, 1, False, -1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 31                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 34                  24  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 35            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1    182592  ultralytics.nn.AddModules.A2C2f.A2C2f        [448, 192, 1, False, -1]
 37                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 38            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 40                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 41            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 43            [13, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 44            [27, 36]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45            [30, 39]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 46            [33, 42]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 47                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 48            [-1, 45]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 49                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 50                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 51            [-1, 44]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 52                  -1  1    182592  ultralytics.nn.AddModules.A2C2f.A2C2f        [448, 192, 1, False, -1]
 53                  -1  1    221440  ultralytics.nn.modules.conv.Conv             [192, 128, 3, 2]
 54            [-1, 43]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 55                  -1  1    444416  ultralytics.nn.modules.block.C3k2            [640, 256, 1, True]
 56    [46, 49, 52, 55]  1    742228  ultralytics.nn.modules.head.Detect           [1, [128, 128, 192, 256]]
YOLOv12-mid-to-late-p6 summary: 1,117 layers, 6,643,028 parameters, 6,643,012 gradients, 10.6 GFLOPs

后期融合结果:

YOLOv12-late-p6 summary: 1,228 layers, 7,875,796 parameters, 7,875,780 gradients, 11.6 GFLOPs

                   from  n    params  module                                       arguments
  0                  -1  1         0  ultralytics.nn.AddModules.multimodal.IN      []
  1                  -1  1         0  ultralytics.nn.AddModules.multimodal.Multiin [1]
  2                  -2  1         0  ultralytics.nn.AddModules.multimodal.Multiin [2]
  3                   1  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
  4                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
  5                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
  6                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
  7                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
  8                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
  9                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 10                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 11                  -1  2    394176  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 192, 2, True, 1]
 12                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 13                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 14                   2  1       464  ultralytics.nn.modules.conv.Conv             [3, 16, 3, 2]
 15                  -1  1      2368  ultralytics.nn.modules.conv.Conv             [16, 32, 3, 2, 1, 2]
 16                  -1  1      6640  ultralytics.nn.modules.block.C3k2            [32, 64, 1, False, 0.25]
 17                  -1  1      9344  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2, 1, 4]
 18                  -1  1     26080  ultralytics.nn.modules.block.C3k2            [64, 128, 1, False, 0.25]
 19                  -1  1    147712  ultralytics.nn.modules.conv.Conv             [128, 128, 3, 2]
 20                  -1  2    180864  ultralytics.nn.AddModules.A2C2f.A2C2f        [128, 128, 2, True, 4]
 21                  -1  1    221568  ultralytics.nn.modules.conv.Conv             [128, 192, 3, 2]
 22                  -1  2    394176  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 192, 2, True, 1]
 23                  -1  1    442880  ultralytics.nn.modules.conv.Conv             [192, 256, 3, 2]
 24                  -1  2    689408  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 256, 2, True, 1]
 25                  13  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 26            [-1, 11]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 27                  -1  1    182592  ultralytics.nn.AddModules.A2C2f.A2C2f        [448, 192, 1, False, -1]
 28                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 29             [-1, 9]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 30                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 31                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 32             [-1, 7]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 33                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 34                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 35            [-1, 30]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 36                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 37                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 38            [-1, 27]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 39                  -1  1    164160  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 192, 1, False, -1]
 40                  -1  1    221440  ultralytics.nn.modules.conv.Conv             [192, 128, 3, 2]
 41            [-1, 13]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 42                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 43                  24  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 44            [-1, 22]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 45                  -1  1    182592  ultralytics.nn.AddModules.A2C2f.A2C2f        [448, 192, 1, False, -1]
 46                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 47            [-1, 20]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 48                  -1  1     82816  ultralytics.nn.AddModules.A2C2f.A2C2f        [320, 128, 1, False, -1]
 49                  -1  1         0  torch.nn.modules.upsampling.Upsample         [None, 2, 'nearest']
 50            [-1, 18]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 51                  -1  1     24000  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 64, 1, False, -1]
 52                  -1  1     36992  ultralytics.nn.modules.conv.Conv             [64, 64, 3, 2]
 53            [-1, 48]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 54                  -1  1     74624  ultralytics.nn.AddModules.A2C2f.A2C2f        [192, 128, 1, False, -1]
 55                  -1  1     73856  ultralytics.nn.modules.conv.Conv             [128, 64, 3, 2]
 56            [-1, 45]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 57                  -1  1    164160  ultralytics.nn.AddModules.A2C2f.A2C2f        [256, 192, 1, False, -1]
 58                  -1  1    221440  ultralytics.nn.modules.conv.Conv             [192, 128, 3, 2]
 59            [-1, 24]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 60                  -1  1    378880  ultralytics.nn.modules.block.C3k2            [384, 256, 1, True]
 61            [33, 51]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 62            [36, 54]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 63            [39, 57]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 64            [42, 60]  1         0  ultralytics.nn.modules.conv.Concat           [1]
 65    [61, 62, 63, 64]  1   1154068  ultralytics.nn.modules.head.Detect           [1, [128, 256, 384, 512]]
YOLOv12-late-p6 summary: 1,228 layers, 7,875,796 parameters, 7,875,780 gradients, 11.6 GFLOPs